Conserved Noether current under U(1) symmetry of some Lagrangian

Yes, your working is correct. You have correctly shown that the Lagrangian is invariant under the infinitesimal transformation.
  • #1
spaghetti3451
1,344
33

Homework Statement



The motion of a complex field ##\psi(x)## is governed by the Lagrangian ##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##.

Write down the Euler-Lagrange field equations for this system.

Verify that the Lagrangian is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##

Derive the Noether current associated with this transformation and verify explicitly that it is conserved using the field equations satisfied by ##\psi##.

Homework Equations



The Attempt at a Solution



##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##

Here's my derivation of the Euler-Lagrange field equations:

##\frac{\partial \mathcal{L}}{\partial \psi} = -m^{2}\psi^{*}-\lambda (\psi^{*}\psi)\psi^{*}##

and

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}\psi)} = \frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \partial_{\mu}\psi^{*}\partial^{\mu}\psi \Big)= \frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \eta^{\mu\nu}\partial_{\mu}\psi^{*}\partial_{\nu}\psi \Big)=\eta^{\mu\nu}\frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \partial_{\mu}\psi^{*}\partial_{\nu}\psi \Big)=\eta^{\mu\nu}{\eta^{\rho}}_{\nu}\partial_{\mu}\psi^{*}={\eta^{\rho}}_{\nu}\eta^{\nu\mu}\partial_{\mu}\psi^{*}=\partial^{\rho}\psi^{*}##

so that

##\frac{\partial \mathcal{L}}{\partial \psi} - \partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)}\Big)=0##

##-m^{2}\psi^{*}-\lambda(\psi^{*}\psi)\psi^{*}-\partial^{2}\psi^{*}=0##

##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi^{*}=0##

Furthermore,

##\frac{\partial \mathcal{L}}{\partial \psi^{*}} = -m^{2}\psi-\lambda (\psi^{*}\psi)\psi##

and

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}\psi^{*})} = \frac{\partial}{\partial (\partial_{\rho}\psi^{*})} \Big( \partial_{\mu}\psi^{*}\partial^{\mu}\psi \Big)={\eta^{\rho}}_{\mu}\partial^{\mu}\psi=\partial^{\rho}\psi##

so that

##\frac{\partial \mathcal{L}}{\partial \psi^{*}} - \partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\Big)=0##

##-m^{2}\psi-\lambda(\psi^{*}\psi)\psi-\partial^{2}\psi=0##

##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi=0##

Am I correct so far?
 
Physics news on Phys.org
  • #2
failexam said:

Homework Statement



The motion of a complex field ##\psi(x)## is governed by the Lagrangian ##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##.

Write down the Euler-Lagrange field equations for this system.

Verify that the Lagrangian is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##

Derive the Noether current associated with this transformation and verify explicitly that it is conserved using the field equations satisfied by ##\psi##.

Homework Equations



The Attempt at a Solution



##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##

Here's my derivation of the Euler-Lagrange field equations:

##\frac{\partial \mathcal{L}}{\partial \psi} = -m^{2}\psi^{*}-\lambda (\psi^{*}\psi)\psi^{*}##

and

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}\psi)} = \frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \partial_{\mu}\psi^{*}\partial^{\mu}\psi \Big)= \frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \eta^{\mu\nu}\partial_{\mu}\psi^{*}\partial_{\nu}\psi \Big)=\eta^{\mu\nu}\frac{\partial}{\partial (\partial_{\rho}\psi)} \Big( \partial_{\mu}\psi^{*}\partial_{\nu}\psi \Big)=\eta^{\mu\nu}{\eta^{\rho}}_{\nu}\partial_{\mu}\psi^{*}={\eta^{\rho}}_{\nu}\eta^{\nu\mu}\partial_{\mu}\psi^{*}=\partial^{\rho}\psi^{*}##

so that

##\frac{\partial \mathcal{L}}{\partial \psi} - \partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)}\Big)=0##

##-m^{2}\psi^{*}-\lambda(\psi^{*}\psi)\psi^{*}-\partial^{2}\psi^{*}=0##

##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi^{*}=0##

Furthermore,

##\frac{\partial \mathcal{L}}{\partial \psi^{*}} = -m^{2}\psi-\lambda (\psi^{*}\psi)\psi##

and

##\frac{\partial \mathcal{L}}{\partial (\partial_{\rho}\psi^{*})} = \frac{\partial}{\partial (\partial_{\rho}\psi^{*})} \Big( \partial_{\mu}\psi^{*}\partial^{\mu}\psi \Big)={\eta^{\rho}}_{\mu}\partial^{\mu}\psi=\partial^{\rho}\psi##

so that

##\frac{\partial \mathcal{L}}{\partial \psi^{*}} - \partial_{\mu}\Big(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\Big)=0##

##-m^{2}\psi-\lambda(\psi^{*}\psi)\psi-\partial^{2}\psi=0##

##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi=0##

Am I correct so far?

It looks right to me.
 
  • #3
Thanks!

Next, I need to verify that the Lagrangian is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##.

Therefore,

##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##
##\implies \delta\mathcal{L} = \delta(\partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2})##
##\implies \delta\mathcal{L} = \partial_{\mu}(\delta\psi^{*})(\partial^{\mu}\psi)+(\partial_{\mu}\psi^{*})\partial^{\mu}(\delta\psi)-m^{2}\psi(\delta\psi^{*})-m^{2}\psi^{*}(\delta\psi)-\lambda|\psi|^{2}\psi^{*}\delta\psi-\lambda|\psi|^{2}\psi\delta\psi^{*}##
##\implies \delta\mathcal{L} = \partial_{\mu}(-i\alpha \psi^{*})(\partial^{\mu}\psi)+(\partial_{\mu}\psi^{*})\partial^{\mu}(i\alpha\psi)-m^{2}\psi(-i\alpha\psi^{*})-m^{2}\psi^{*}(i\alpha\psi)-\lambda|\psi|^{2}\psi^{*}(i\alpha\psi)-\lambda|\psi|^{2}\psi(-i\alpha\psi^{*})##
##\implies \delta\mathcal{L} = -i\alpha(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)+i\alpha(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)+i\alpha(m^{2}\psi\psi^{*})-i\alpha(m^{2}\psi^{*}\psi)-i\alpha(\lambda|\psi|^{2}\psi^{*}\psi)+i\alpha(\lambda|\psi|^{2}\psi\psi^{*})##
##\implies \delta\mathcal{L} = 0##, due to pairwise cancellation.

So, the Lagrangian ##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}## is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##.

Is my working correct?
 
  • #4
failexam said:
Thanks!

Next, I need to verify that the Lagrangian is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##.

Therefore,

##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}##
##\implies \delta\mathcal{L} = \delta(\partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2})##
##\implies \delta\mathcal{L} = \partial_{\mu}(\delta\psi^{*})(\partial^{\mu}\psi)+(\partial_{\mu}\psi^{*})\partial^{\mu}(\delta\psi)-m^{2}\psi(\delta\psi^{*})-m^{2}\psi^{*}(\delta\psi)-\lambda|\psi|^{2}\psi^{*}\delta\psi-\lambda|\psi|^{2}\psi\delta\psi^{*}##
##\implies \delta\mathcal{L} = \partial_{\mu}(-i\alpha \psi^{*})(\partial^{\mu}\psi)+(\partial_{\mu}\psi^{*})\partial^{\mu}(i\alpha\psi)-m^{2}\psi(-i\alpha\psi^{*})-m^{2}\psi^{*}(i\alpha\psi)-\lambda|\psi|^{2}\psi^{*}(i\alpha\psi)-\lambda|\psi|^{2}\psi(-i\alpha\psi^{*})##
##\implies \delta\mathcal{L} = -i\alpha(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)+i\alpha(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)+i\alpha(m^{2}\psi\psi^{*})-i\alpha(m^{2}\psi^{*}\psi)-i\alpha(\lambda|\psi|^{2}\psi^{*}\psi)+i\alpha(\lambda|\psi|^{2}\psi\psi^{*})##
##\implies \delta\mathcal{L} = 0##, due to pairwise cancellation.

So, the Lagrangian ##\mathcal{L} = \partial_{\mu}\psi^{*}\partial^{\mu}\psi-m^{2}\psi^{*}\psi-\frac{\lambda}{2}(\psi^{*}\psi)^{2}## is invariant under the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}##.

Is my working correct?

Yes.
 
  • #5
Thanks!

Finally, I need to derive the Noether current ##j^{\mu}## associated with the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}## and verify explicitly that the Noether current ##j^{\mu}## is conserved using the field equations ##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi=0## and ##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi^{*}=0## satisfied by ##\psi##.

##\delta\mathcal{L}=\frac{\delta\mathcal{L}}{\delta\psi}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\partial_{\mu}(\delta\psi)+\frac{\delta\mathcal{L}}{\delta\psi^{*}}\delta\psi^{*}+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\partial_{\mu}(\delta\psi^{*})##
##\implies \delta\mathcal{L}=\frac{\delta\mathcal{L}}{\delta\psi}\delta\psi+\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi\Big)-\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\Big)\delta\psi+\frac{\delta\mathcal{L}}{\delta\psi^{*}}\delta\psi^{*}+\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big)-\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\Big)\delta\psi^{*}##
##\implies \delta\mathcal{L}=\partial_{\mu}\Big[\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big]##
##\implies \partial_{\mu}\Big[\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big]=0##
##\implies j^{\mu} = \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}##
##\implies j^{\mu} = (\partial^{\mu}\psi^{*})(i\alpha\psi)+(\partial^{\mu}\psi)(-i\alpha\psi^{*})##
##\implies j^{\mu} = i\alpha (\psi(\partial^{\mu}\psi^{*})-\psi^{*}(\partial^{\mu}\psi))##

and

##\partial_{\mu}j^{\mu}=i\alpha\partial_{\mu}[\psi(\partial^{\mu}\psi^{*})-\psi^{*}(\partial^{\mu}\psi)]##
##\implies \partial_{\mu}j^{\mu}=i\alpha[(\partial_{\mu}\psi)(\partial^{\mu}\psi^{*})+\psi(\partial_{\mu}\partial^{\mu}\psi^{*})-(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)-\psi^{*}(\partial_{\mu}\partial^{\mu}\psi)]##
##\implies \partial_{\mu}j^{\mu}=i\alpha[(\partial_{\mu}\psi)(\partial^{\mu}\psi^{*})+\psi(-m^{2}-\lambda|\psi|^{2})\psi^{*}-(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)-\psi^{*}(-m^{2}-\lambda|\psi|^{2})\psi]##
##\implies \partial_{\mu}j^{\mu}=0##, due to pairwise cancellation.

Are my answers correct?
 
  • #6
failexam said:
Thanks!

Finally, I need to derive the Noether current ##j^{\mu}## associated with the infinitesimal transformation ##\delta \psi = i \alpha \psi, \delta \psi^{*} = - i \alpha \psi^{*}## and verify explicitly that the Noether current ##j^{\mu}## is conserved using the field equations ##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi=0## and ##(\partial^{2}+m^{2}+\lambda|\psi|^{2})\psi^{*}=0## satisfied by ##\psi##.

##\delta\mathcal{L}=\frac{\delta\mathcal{L}}{\delta\psi}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\partial_{\mu}(\delta\psi)+\frac{\delta\mathcal{L}}{\delta\psi^{*}}\delta\psi^{*}+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\partial_{\mu}(\delta\psi^{*})##
##\implies \delta\mathcal{L}=\frac{\delta\mathcal{L}}{\delta\psi}\delta\psi+\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi\Big)-\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\Big)\delta\psi+\frac{\delta\mathcal{L}}{\delta\psi^{*}}\delta\psi^{*}+\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big)-\partial_{\mu}\Big(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\Big)\delta\psi^{*}##
##\implies \delta\mathcal{L}=\partial_{\mu}\Big[\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big]##
##\implies \partial_{\mu}\Big[\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}\Big]=0##
##\implies j^{\mu} = \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi)}\delta\psi+\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\psi^{*})}\delta\psi^{*}##
##\implies j^{\mu} = (\partial^{\mu}\psi^{*})(i\alpha\psi)+(\partial^{\mu}\psi)(-i\alpha\psi^{*})##
##\implies j^{\mu} = i\alpha (\psi(\partial^{\mu}\psi^{*})-\psi^{*}(\partial^{\mu}\psi))##

and

##\partial_{\mu}j^{\mu}=i\alpha\partial_{\mu}[\psi(\partial^{\mu}\psi^{*})-\psi^{*}(\partial^{\mu}\psi)]##
##\implies \partial_{\mu}j^{\mu}=i\alpha[(\partial_{\mu}\psi)(\partial^{\mu}\psi^{*})+\psi(\partial_{\mu}\partial^{\mu}\psi^{*})-(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)-\psi^{*}(\partial_{\mu}\partial^{\mu}\psi)]##
##\implies \partial_{\mu}j^{\mu}=i\alpha[(\partial_{\mu}\psi)(\partial^{\mu}\psi^{*})+\psi(-m^{2}-\lambda|\psi|^{2})\psi^{*}-(\partial_{\mu}\psi^{*})(\partial^{\mu}\psi)-\psi^{*}(-m^{2}-\lambda|\psi|^{2})\psi]##
##\implies \partial_{\mu}j^{\mu}=0##, due to pairwise cancellation.

Are my answers correct?

I think that's all correct.
 

Related to Conserved Noether current under U(1) symmetry of some Lagrangian

1. What is a conserved Noether current?

A conserved Noether current is a mathematical quantity that remains constant over time in a physical system due to the symmetry of the system.

2. What is U(1) symmetry?

U(1) symmetry is a type of symmetry in physics that refers to the invariance of a physical system under a rotation by an angle of 2π around a fixed point.

3. How is a conserved Noether current related to U(1) symmetry?

A conserved Noether current is related to U(1) symmetry because the conservation of the current is a consequence of the symmetry of the system under a U(1) transformation.

4. What is the significance of a conserved Noether current under U(1) symmetry?

The significance of a conserved Noether current under U(1) symmetry is that it allows for the conservation of a physical quantity, such as energy or momentum, in a system that exhibits U(1) symmetry.

5. How is the conserved Noether current calculated for a system with U(1) symmetry?

The conserved Noether current for a system with U(1) symmetry is calculated using Noether's theorem, which relates the conserved current to the Lagrangian of the system and the transformation properties of the fields in the system under a U(1) transformation.

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
960
  • Advanced Physics Homework Help
Replies
0
Views
748
  • Advanced Physics Homework Help
3
Replies
95
Views
5K
  • Advanced Physics Homework Help
Replies
1
Views
377
  • Advanced Physics Homework Help
Replies
1
Views
505
  • Advanced Physics Homework Help
Replies
1
Views
981
  • Advanced Physics Homework Help
Replies
10
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
828
  • Advanced Physics Homework Help
Replies
4
Views
1K
  • Advanced Physics Homework Help
Replies
30
Views
5K
Back
Top