Tensor Calculus (Einstein notation)

In summary: So, in summary, Einstein notation is meant to be done for the same term, here you have two terms. There is no implicit summation in ##\partial_\mu F_\nu - \partial_\nu F_\mu##. To sum over indices, you must explicitly use the summation symbol and the universal quantifier. The sum over indices can then be written as:$$\sum_{\mu = 0}^{3} \phi^\mu G_{\mu \nu}$$
  • #1
paperplane
3
0
TL;DR Summary
How to sum over indices when they aren't being contracted?
Hello,

I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
 
Physics news on Phys.org
  • #2
Einstein notation for summation is meant to be done for the same term, here you have two terms. There is no implicit summation in ##\partial_\mu F_\nu - \partial_\nu F_\mu##.

Let's call it ##G_{\mu \nu}## i.e. ##G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu##. We have
## G_{00} = \partial_0 F_0 - \partial_0 F_0 = 0##
## G_{10} = \partial_1 F_0 - \partial_0 F_1 = - G_{01}##
## G_{11} = \partial_1 F_1 - \partial_1 F_1 = 0 = G_{22} = G_{33}##
## G_{23} = \partial_2 F_3 - \partial_3 F_2 = - G_{32}##
and so on.

Now, lets assume I contract ##G_{\mu \nu}## with ##\phi^\mu##, we have due to Einstein summation convention
##\phi^\mu G_{\mu \nu} = \phi^0G_{0 \nu} + \phi^1G_{1\nu} + \phi^2G_{2 \nu} + \phi^3G_{3 \nu}##

Let's define ##\psi_\nu = \phi^\mu G_{\mu \nu}##.
We have
##\psi_0 = \phi^\mu G_{\mu 0} = \phi^0G_{0 0} + \phi^1G_{10} + \phi^2G_{20} + \phi^3G_{30} =\phi^1G_{10} + \phi^2G_{20} + \phi^3G_{30} ##
##\psi_1 = \phi^\mu G_{\mu 1} = \phi^0G_{0 1} + \phi^1G_{11} + \phi^2G_{21} + \phi^3G_{31} =\phi^0G_{0 1} + \phi^2G_{21} + \phi^3G_{31}##
and so on
 
  • Like
Likes nasu, topsquark and PeroK
  • #3
Ah I understand now, thank you!
 
  • #4
paperplane said:
Ah I understand now, thank you!
I updated my reply above with some more examples.
 
  • Like
Likes topsquark and paperplane
  • #5
paperplane said:
TL;DR Summary: How to sum over indices when they aren't being contracted?

Hello,

I realize this might sound dumb, but I'm having such a hard time understanding Einstein notation. For something like ∂uFv - ∂vFu, why is this not necessarily 0 for tensor Fu? Since all these indices are running through the same values 0,1,2,3?
Einstein notation omits two standard elements of mathematical notation: the summation symbol (##\sum##) and the universal quantifier (##\forall##). In the above examples we have:
$$G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu$$In full notation this would be:
$$\forall \mu, \nu: G_{\mu \nu} = \partial_\mu F_\nu - \partial_\nu F_\mu$$Note that this is actually ##16## equations! (One for every combination of ##\mu = 0, 1,2,3## and ##\nu = 0, 1,2,3##.) And:
$$\psi_\nu = \phi^\mu G_{\mu \nu}$$In full notation this would be:
$$\forall \nu: \psi_\nu = \sum_{\mu = 0}^{3} \phi^\mu G_{\mu \nu}$$And that is four equations.
 
  • Like
Likes malawi_glenn and Ibix

Similar threads

Replies
2
Views
1K
  • Special and General Relativity
Replies
10
Views
2K
  • Linear and Abstract Algebra
Replies
5
Views
1K
  • Special and General Relativity
Replies
4
Views
957
  • Set Theory, Logic, Probability, Statistics
Replies
6
Views
1K
Replies
36
Views
4K
  • Linear and Abstract Algebra
Replies
12
Views
1K
  • Special and General Relativity
Replies
14
Views
1K
  • Classical Physics
Replies
4
Views
1K
  • Special and General Relativity
Replies
2
Views
1K
Back
Top