Solve the problem involving the given double integral

  • #1
chwala
Gold Member
2,664
352
Homework Statement
see attached. Interest is on ( Problem number 9) ... i thought its the most challenging one on the page...
Relevant Equations
Integration
1701861831786.png


Ok in my approach i have the lines,
starting with the inner integral,

$$\int_0^1 xy \cos (x^2y) dx$$

I let ##u =x^2y , u(0)=0, u(1)=y##

...

$$\dfrac{1}{2} \int_0^y \cos u du=\left[\dfrac{1}{2} \sin u \right]_0^y= \left[\dfrac{1}{2} \sin (x^2y) \right]_0^1=\left[\dfrac{1}{2} \sin y \right]$$Now to the outer integral,
$$ \dfrac{1}{2} \int_0^{0.5π} \sin y dy= \left[-\dfrac {1}{2} \cos y \right]_0^{0.5π}=-0+\dfrac{1}{2}= \dfrac{1}{2}$$

Any input is welcome trying to refresh on this things...
 
Last edited:
Physics news on Phys.org
  • #2
chwala said:
Homework Statement: see attached. Interest is on ( Problem number 9) ... i thought its the most challenging one on the page...
Relevant Equations: Integration

View attachment 336749

Ok in my approach i have the lines,
starting with the inner integral,

$$\int_0^1 xy \cos (x^2y) dx$$

I let ##u =x^2y , u(0)=0, u(1)=y##

...

$$\dfrac{1}{2} \int_0^y \cos u du=\left[\dfrac{1}{2} \sin u \right]_0^y= \left[\dfrac{1}{2} \sin (x^2y) \right]_0^1=\left[\dfrac{1}{2} \sin y \right]$$Now to the outer integral,
$$ \dfrac{1}{2} \int_0^{0.5π} \sin y dy= \left[-\dfrac {1}{2} \cos y \right]_0^{0.5π}=-0+\dfrac{1}{2}= \dfrac{1}{2}$$

Any input is welcome trying to refresh on this things...
Well, it is correct. I would prefer a single line of argumentation over those split equations you use. E.g.
\begin{align*}
\int_{0}^{\pi/2}\int_0^1 xy\,\cos(x^2y) \,dx \,dy&= \left.\int_{0}^{\pi/2}\int_{x=0}^{x=1} xy\,\cos(u)\,dx \,dy \quad\right| \;u:=x^2y\, , \,\dfrac{du}{dx}=2xy\, , \,xy\cdot dx=\dfrac{du}{2}\\
&=\dfrac{1}{2}\int_{0}^{\pi/2} \int_{u=0}^{u=y} \cos(u) \,du\,dy \\
&=\dfrac{1}{2}\int_{0}^{\pi/2}\left[\sin(u)\right]_0^y\;dy\\
&=\dfrac{1}{2}\int_{0}^{\pi/2} \sin(y)\,dy \\&=-\dfrac{1}{2} \left[\cos(y)\right]_{0}^{\pi/2}\\
&=-\dfrac{1}{2}\cdot (0-1)\\
&=\dfrac{1}{2}
\end{align*}
I think we should make a distinction between what we scribble down as a calculation and what we write down at the end. This has an additional advantage if things are more complicated than this. It forces you to reconsider the calculation step by step and discloses possible mistakes. As I said, this is very valuable in more complex situations, e.g. if your proof takes pages instead of lines. It's better to learn it with lines before it becomes pages.
 
Last edited:
  • Like
Likes Math100 and chwala

Similar threads

  • Calculus and Beyond Homework Help
Replies
2
Views
476
  • Calculus and Beyond Homework Help
Replies
10
Views
535
  • Calculus and Beyond Homework Help
Replies
14
Views
367
  • Calculus and Beyond Homework Help
Replies
7
Views
820
  • Calculus and Beyond Homework Help
Replies
2
Views
546
  • Calculus and Beyond Homework Help
Replies
2
Views
491
  • Calculus and Beyond Homework Help
Replies
2
Views
338
  • Calculus and Beyond Homework Help
Replies
10
Views
512
  • Calculus and Beyond Homework Help
Replies
1
Views
489
  • Calculus and Beyond Homework Help
Replies
1
Views
132
Back
Top