Question on the Lorentz force: Why is the force not F=q(v×B) = F=qv×qB

In summary, the equation of Lorentz force for the force acting on a moving charge in electric and magnetic field is:
  • #1
unplebeian
157
1
TL;DR Summary
Why is the charge not multiplied to the cross product
Background:
cb96d860cadff3d60e8ffb90b067b7f2b453c8e1
is the equation of Lorentz force for the force acting on a moving charge in electric and magnetic field.

For the magnetic field only it is : F=qv×B.

Question:
For magnetic field only why is the force not F=q(v×B) = F=qv×qB
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
unplebeian said:
TL;DR Summary: Why is the charge not multiplied to the cross product

Background:
cb96d860cadff3d60e8ffb90b067b7f2b453c8e1
is the equation of Lorentz force for the force acting on a moving charge in electric and magnetic field.

For the magnetic field only it is : F=qv×B.

Question:
For magnetic field only why is the force not F=q(v×B) = F=qv×qB
You are only multiplying by q once, so
##q \textbf{v} \times \textbf{B}##

##= q ( \textbf{v} \times \textbf{B} )##

## = (q \textbf{v} ) \times \textbf{B}##

##= \textbf{v} \times (q \textbf{B})##

-Dan
 
  • Like
Likes Gavran and Ibix
  • #3
Hi, Dan,
I'm sorry I didn't get it. That is a scalar multiplication so q should be multiplied to both. Generally a(bxc)= abxac.
Why are we multiplying only once?
 
  • #4
unplebeian said:
Generally a(bxc)= abxac.
This is wrong.
$$a(\mathbf b \times \mathbf c) = a\mathbf b \times \mathbf c = \mathbf b \times a\mathbf c$$You must be thinking of:
$$a(\mathbf b + \mathbf c) = a\mathbf b + a\mathbf c$$
 
  • Like
Likes Gavran, Vanadium 50, Ibix and 1 other person
  • #5
unplebeian said:
Hi, Dan,
I'm sorry I didn't get it. That is a scalar multiplication so q should be multiplied to both. Generally a(bxc)= abxac.
Why are we multiplying only once?
Is ##2(3 \times 4 ) = (2 \cdot 3) \times (2 \cdot 4)##?

-Dan
 
  • Like
Likes Vanadium 50, Ibix and PeroK
  • #6
PeroK said:
This is wrong.
$$a(\mathbf b \times \mathbf c) = a\mathbf b \times \mathbf c = \mathbf b \times a\mathbf c$$You must be thinking of:
$$a(\mathbf b + \mathbf c) = a\mathbf b + a\mathbf c$$
Easy to make mistake if in elementary school you learned the order of operations as "Dot (##\cdot## and ##\colon##) before stroke (##+## and ##-##)", because that's how the basic operators are written in your country.
 
Last edited:
  • Like
Likes topsquark
  • #7
Thank you, Dan. I thought about it graphically and it's evident that the scalar multiplication to both vectors prior to the cross product operation is incorrect. Rather take the cross product and then perform the scalar multiplication or simply any one vector like you suggested.

Thank you.
 
  • Like
Likes berkeman
  • #8
## \vec F = q ( \vec E + \vec v \times \vec B ) ##

## q ( \vec E + \vec v \times \vec B ) = q \vec E + q ( \vec v \times \vec B ) ## – the distributive property of scalar multiplication over the vector addition

## q ( \vec v \times \vec B ) = ( q \vec v ) \times \vec B = \vec v \times ( q \vec B ) ## - the multiplication by a scalar property of the vector product (the multiplication by a scalar is not distributive over the vector product)
 
  • Like
Likes topsquark, malawi_glenn and PeroK
  • #9
Gavran said:
## \vec F = q ( \vec E + \vec v \times \vec B ) ##

## q ( \vec E + \vec v \times \vec B ) = q \vec E + q ( \vec v \times \vec B ) ## – the distributive property of scalar multiplication over the vector addition

## q ( \vec v \times \vec B ) = ( q \vec v ) \times \vec B = \vec v \times ( q \vec B ) ## - the multiplication by a scalar property of the vector product (the multiplication by a scalar is not distributive over the vector product)
:welcome:
 
  • Like
Likes topsquark

Similar threads

Replies
7
Views
1K
Replies
6
Views
1K
  • Electromagnetism
Replies
4
Views
1K
Replies
2
Views
1K
Replies
5
Views
666
  • Electromagnetism
Replies
25
Views
2K
Replies
4
Views
816
Replies
14
Views
870
Replies
4
Views
1K
  • Electromagnetism
Replies
4
Views
1K
Back
Top