Killing fields as eigenvectors of Ricci tensor

In summary, we showed that if ##\xi^a## is a killing vector field and its twist ##\omega_a## satisfies ##\nabla_{[a}\omega_{b]} = 0##, then ##\omega_a = \nabla_a \omega## for some scalar field ##\omega##, which is equivalent to showing ##(d\omega)_{ab} = \nabla_{[a}\omega_{b]} = 0##. Furthermore, we showed that this condition is equivalent to ##\xi^a## being an eigenvector of the Ricci tensor, i.e. ##R^{a}{}{}_{b}\xi^b = \
  • #1
WannabeNewton
Science Advisor
5,844
550
Hi guys! I need help on a problem from one of my GR texts. Suppose that ##\xi^a## is a killing vector field and consider its twist ##\omega_a = \epsilon_{abcd}\xi^b \nabla^c \xi^d##. I must show that ##\omega_a = \nabla_a \omega## for some scalar field ##\omega##, which is equivalent to showing ##(d\omega)_{ab} = \nabla_{[a}\omega_{b]} = 0##, if and only if ##\xi^a## is an eigenvector of the Ricci tensor i.e. ##R^{a}{}{}_{b}\xi^b = \lambda \xi^{a}## for some scalar field ##\lambda##.

First note that ##\nabla_{[a}\omega_{b]} = 0## if and only if ##\nabla_{a}\omega^{abc} = 0## where ##\omega^{abc} = \epsilon^{abcd}\omega_{d}## is the dual of the twist; inserting the expression for ##\omega_a## we find ##\omega^{abc} = -6\xi^{[a}\nabla^{b}\xi^{c]}## (see the formulas for ##\epsilon_{abcd}## in section B.2 of Wald, particularly page 433). This is easy to see as ##\nabla_{[a}\omega_{b]} = 0 \Rightarrow \epsilon^{efgh}\epsilon_{abgh}\nabla_{e}\omega_{f} = 0 \Rightarrow \epsilon_{abcd}\nabla_{e}(\xi^{[e}\nabla^{c}\xi^{d]}) = 0 \Rightarrow \nabla_{e}(\xi^{[e}\nabla^{a}\xi^{b]}) = \nabla_{e}\omega^{ebc} = 0##
because ##\nabla^{[a}\xi^{b]} = \nabla^a \xi^b## on account of ##\xi^a## being a killing vector field. For the converse, ##\epsilon^{abcd}\nabla_{c}\omega_{d} = \epsilon^{dcba}\epsilon_{defg}\nabla_{c}(\xi^{e}\nabla^{f}\xi^{g}) = -6\nabla_{c}(\xi^{[c}\nabla^{b}\xi^{a]}) = \nabla_{c}\omega^{cba} = 0## thus ##\nabla_{[a}\omega_{b]} = 0##.

Now on to the problem itself, if ##R^{a}{}{}_{b}\xi^b = \lambda \xi^{a}## then
##\nabla_a \omega^{abc} = -6\nabla_{a}(\xi^{[a}\nabla^{b}\xi^{c]} ) = -2(\xi^b \nabla_a \nabla^c \xi^a -\xi^c \nabla_a \nabla^b \xi^a + R^{cb}{}{}_{ad}\xi^{a}\xi^{d})\\ = -2(R^{c}{}{}_{d}\xi^{d}\xi^{b} - R^{b}{}{}_{d}\xi^{d}\xi^{c}) = -2(\lambda\xi^{c}\xi^{b} - \lambda \xi^{b}\xi^{c}) = 0.##

It's the converse I'm stuck on mainly. If ##\nabla_{[a}\omega_{b]} = 0## then, using the above, ##R^{c}{}{}_{d}\xi^{d}\xi^{b} = R^{b}{}{}_{d}\xi^{d}\xi^{c}##. If ##\xi^a## is non-null (##\xi^a \xi_a \neq 0##), then ##R^{c}{}{}_{d}\xi^{d} = \frac{R_{bd}\xi^b\xi^{d}}{\xi^b \xi_b}\xi^{c} = \lambda \xi^c ## as desired. However I don't get what to do when ##\xi^a## is null; I don't see how to show the desired result.
 
Physics news on Phys.org
  • #2
Ok if ##\xi^a## is a null killing vector field, then ##R_{ab}\xi^a \xi^b = 2\omega^2## where ##\omega^2## is the norm of the twist ##\omega_a##. If ##\xi^a## is an eigenvector of ##R_{ab}## then ##\omega^2 = 0## and since this is the twist, this implies ##\omega_a = 0##.

So for a null killing vector field ##\xi^a##, either (1) ##\nabla_{[a}\omega_{b]} = 0## implies ##\omega_a = 0##, in which case ##\xi^a = \alpha\nabla^a \beta## hence ##\nabla^{a}\xi^{b} = \nabla^{[a}\xi^{b]} = \nabla^{[a}\alpha \nabla^{b]}\beta## thus ##R^{a}{}{}_b \xi^b = \nabla_b \nabla^a \xi^b = \nabla_b (\nabla^{[a}\alpha \nabla^{b]}\beta) = 0##,
or (2) there exists a space-time with some null killing field ##\xi^a## such that ##\omega_a \neq 0## but ##\nabla_{[a}\omega_{b]} = 0## for ##\xi^a##, which would mean that the problem statement is incorrect as given and should specify that the killing field is non-null. Does anyone know if (1) is true or have an example of (2)?
 
Last edited:
  • #3
If anyone is interested, it just so happens that for any null killing field ##\xi^a##, ##\nabla_{[a}\omega_{b]} = 0## implies ##\omega_a = 0##. As noted in post #2, this then implies that ##\xi^a## is an eigenvector of ##R_{ab}##.

To see this, first note that since ##\xi^a \xi_a = 0## we have ##\xi^a \nabla_b \xi_a = 0 = -\xi^a \nabla_a \xi_b##. Also, from the calculations in post #1 we have that ##\nabla_{[a}\omega_{b]} = 0\Rightarrow \xi^b \nabla_a \nabla^c \xi^a = \xi^c \nabla_a \nabla^b \xi^a ## hence ##\xi^b (\xi_c \nabla_a \nabla^c \xi^a) = 0## but ##\xi^a## is an arbitrary null killing field so it must be that ##\xi_c \nabla_a \nabla^c \xi^a = 0## thus ##\nabla_a \xi_b \nabla^a \xi^b = 0##.

Now let ##\nu ^a## be an arbitrary vector field and consider ##(\omega _a \nu ^a)^2\\ = (\epsilon_{abcd}\nu^a \xi^b \nabla^c \xi^d)(\epsilon^{efgh}\nu_e \xi_f \nabla_g \xi_h)\\ = -4!(\nu^a \xi^b \nabla^c \xi^d )(\nu_{[a}\xi_{b}\nabla_{c}\xi_{d]})##
Using ##\xi^a \xi_a = \xi^a \nabla_b \xi_a = \xi^a \nabla_a \xi_b = \nabla_a \xi_b \nabla^a \xi^b = 0##, it is easy to see that ##(\omega _a \nu ^a)^2 = 0## hence ##\omega_a = 0##.
 
  • #4
Is there a way to do it more directly, without having to introduce an additional arbitrary vector field?
 
  • #5
Uh well the argument would be extremely similar. First note that ##\omega_a## is null, ##\omega^a \omega_a = \epsilon^{abcd}\epsilon_{aefg}(\xi_b \nabla_c \xi_d )(\xi^e \nabla^f \xi^g)\\ = -6(\xi_b \nabla_c \xi_d )(\xi^{[b} \nabla^c \xi^{d]} )\\ = -2\{(\xi_b \xi^b) \nabla_c \xi_d \nabla^c \xi^d - (\xi_b \nabla^b \xi^d )\xi^c \nabla_c \xi_d + (\xi_b \nabla^b \xi^c )\xi^d \nabla_c \xi_d\} = 0##

Also note that ##\xi^a \omega_a = \epsilon_{[ab]cd}\xi^{(a}\xi^{b)}\nabla^c \xi^d = 0 ##. Hence ##\omega^a = \alpha \xi^a##, where ##\alpha## is a scalar field, because two orthogonal null vector fields must be parallel. Now ##\nabla_b \omega_{c} = \xi_c \nabla_b \alpha + \alpha \nabla_b \xi_c ## therefore ##\xi_{[a}\nabla_b \omega_{c]} = \xi_{[a}\xi_c \nabla_{b]} \alpha + \alpha \xi_{[a}\nabla_b \xi_{c]} ##. But ##\xi_{[a}\xi_{c]} = 0## so we are left with ##\xi_{[a}\nabla_b \omega_{c]} = \alpha \xi_{[a}\nabla_b \xi_{c]} ##.

Thus if ##\nabla_{[a}\omega_{b]} = 0## then ##\alpha \xi_{[a}\nabla_b \xi_{c]} = 0## which implies ##\alpha = 0##, directly yielding ##\omega^a = 0##, or ##\xi_{[a}\nabla_b \xi_{c]} = 0## implying ##\epsilon_{eabc}\omega^{e} \propto\xi_{[a}\nabla_b \xi_{c]} = 0## hence ##\omega^{d}\propto \epsilon^{dabc}\epsilon_{eabc}\omega^{e} = 0##.
 

Related to Killing fields as eigenvectors of Ricci tensor

1. What are killing fields?

Killing fields are vector fields on a Riemannian manifold that preserve the metric tensor. This means that when the killing fields act on any point in the manifold, they do not change the distance between any two points. They are important in differential geometry and have applications in general relativity and geometric analysis.

2. What is the Ricci tensor?

The Ricci tensor is a mathematical object that is used to describe the curvature of a Riemannian manifold. It is a symmetric tensor that summarizes how the metric tensor changes in different directions on the manifold. It is an important tool in understanding the geometry of a space and is used in many areas of mathematics and physics.

3. How are killing fields related to the Ricci tensor?

Killing fields are closely related to the Ricci tensor. In fact, the killing fields can be seen as the eigenvectors of the Ricci tensor. This means that the killing fields are special directions on the manifold where the Ricci tensor has particularly simple behavior. This relationship has important implications in both differential geometry and general relativity.

4. What is the significance of killing fields as eigenvectors of the Ricci tensor?

The fact that killing fields are eigenvectors of the Ricci tensor is significant in several ways. One important consequence is that on spaces with constant curvature, the killing fields are the only eigenvectors of the Ricci tensor. This helps us understand the geometry of these spaces in a more intuitive way. Additionally, this relationship has applications in studying the stability of solutions to certain differential equations on Riemannian manifolds.

5. How are killing fields and Ricci curvature used in physics?

Killing fields and Ricci curvature have many applications in physics, particularly in general relativity. Killing fields are used to describe symmetries in space-time, while the Ricci curvature is used to describe the curvature of space-time caused by the distribution of matter and energy. These concepts are essential in understanding the behavior of gravity and have been used to make predictions about phenomena such as black holes and gravitational waves.

Similar threads

  • Special and General Relativity
Replies
3
Views
761
  • Special and General Relativity
Replies
2
Views
778
  • Special and General Relativity
Replies
7
Views
1K
  • Special and General Relativity
Replies
7
Views
128
  • Special and General Relativity
Replies
9
Views
1K
  • Special and General Relativity
Replies
11
Views
1K
  • Special and General Relativity
Replies
9
Views
2K
  • Special and General Relativity
Replies
2
Views
1K
  • Special and General Relativity
Replies
22
Views
3K
  • Special and General Relativity
Replies
8
Views
3K
Back
Top