How much force is required to excite a vibrating machine with a load?

In summary, the formula used to calculate how much force is required to excite a vibrating machine is based on Newton's second law and the acceleration of simple harmonic motion. If there is little material load relative to machine mass, then the force will be based on the machine weight only.
  • #1
slobberingant
2
0
TL;DR Summary
Need help understanding a vibrating force formula that was given to me at work.
I have been given a formula at work to use for calculating how much force is required to excite a vibrating machine with load. Only a proportion of material load on a vibrating machine is considered.

The formula is
F = 2*S / (K*M)
Where:
S = stroke (mm)
K = (140/w)^2
w = angular velocity (rad/s)
M = (M1 + (M1 + M2)) / (M1 * (M1 + M2)) (1/kg)
M1 = machine weight (kg)
M2 = material weight (kg)

I've manage to derive that the formula is based on Newton's second law and the acceleration of simple harmonic motion.
F = ma
a = Aw^2 - simple harmonic acceleration formula
Where:
A = amplitude (mm) => Stroke = 2*A

Therefore
F = mAw^2

My formula above is different in the following ways.
- w^2 ((rad/s)^2) becomes K - (140/w)^2 (1/((rad/s)^2)) but is divided rather than multiplied.
- m (kg) becomes M (1/kg) and is also divided rather than multiplied.

What does the M variable in my formula above do? - It seems like a ratio between machine and material mass. However, in isolation, the values it produces can be lower than the machine weight which would result in incorrect force values.

Where does the 140 constant in K come from?
 
Engineering news on Phys.org
  • #2
slobberingant said:
- w^2 ((rad/s)^2) becomes K - (140/w)^2 (1/((rad/s)^2)) but is divided rather than multiplied.
No. w^2 becomes 1/K

slobberingant said:
- m (kg) becomes M (1/kg) and is also divided rather than multiplied.
No. m becomes 1/M

slobberingant said:
What does the M variable in my formula above do? - It seems like a ratio between machine and material mass. However, in isolation, the values it produces can be lower than the machine weight which would result in incorrect force values.
Actually, if M1 >> M2, then 1/M tends toward 0.5*M1, which multiplied by the 2 in the equation really gives F = M1 * [acceleration].

If M2 >> M1, then 1/M tends toward M1, which gives F = 2 * M1 * [acceleration]. I'm not sure what it means though.

slobberingant said:
Where does the 140 constant in K come from?
Not sure, but I think it might have to do with some pre-calculated damping for the machine.

More info: https://www.brown.edu/Departments/E...Notes/vibrations_forced/vibrations_forced.htm
 
  • #3
Thanks Jack.
Fantastic insight.
Regarding M, if there is little load relative to mass then use the mass of machine only. This makes sense as larger machines are less effected by material load. This logic works with M2 >> M1. This approach helps greatly.
I will do some more reading on damping.
Thank you.
 

Similar threads

  • Mechanical Engineering
Replies
8
Views
1K
  • Mechanical Engineering
Replies
7
Views
2K
  • Mechanical Engineering
Replies
8
Views
4K
  • Introductory Physics Homework Help
Replies
9
Views
1K
  • Mechanical Engineering
Replies
5
Views
3K
  • Mechanical Engineering
Replies
0
Views
452
  • Mechanical Engineering
Replies
4
Views
2K
Replies
7
Views
2K
  • Mechanical Engineering
Replies
5
Views
1K
Replies
42
Views
12K
Back
Top