Electric field in a rotating frame

In summary, the conversation discusses a scenario where a particle is moving in a circular path with uniform velocity in the presence of a radially pointing electric field. The question is whether the field felt in the rest frame of the particle will be constant or a superposition of two oscillating fields out of phase by π/2. The direction of the electric field and centrifugal force coincide with the radial direction in the approximation that the particle's speed is much smaller than the speed of light. However, if the speed of the particle is comparable to the speed of light, relativity must be taken into consideration. More information is needed to determine the orientation of the x and y axes in the rotating frame of reference.
  • #1
Malamala
299
27
Hello! I have a radially pointing electric field i.e. at a given radius, R, the electric field has the same magnitude and points radially around that circle of radius R. I have a particle moving around that circle of radius R, with uniform velocity (ignore for now how it gets to move like that). What is the field felt in the rest frame of the particle (assume that z-axis is the same for the lab and particle frame)? Will it be a constant field always pointing along the same direction, or will it appear as a superposition of 2 oscillating fields, one in x the other in y direction, out of phase by ##\pi/2## (basically like an electric field rotating in the x-y plane in the frame of the particle)?
 
Physics news on Phys.org
  • #2
In the approximation that speed of the particle v << c, the direction of thus designed electric field, and centrifugal force in addition, coincide with r, the radical direction of the reference frame of rotation. If v is comparable to c, we must consider relativity and that might be messy.

Malamala said:
Will it be a constant field always pointing along the same direction, or will it appear as a superposition of 2 oscillating fields, one in x the other in y direction, out of phase by π/2 (basically like an electric field rotating in the x-y plane in the frame of the particle)?
To reply we may need more information how you set not r and ##\phi## but x-axis and y-axis in the rotating frame of reference.
 
Last edited:

Similar threads

Replies
14
Views
1K
Replies
3
Views
734
Replies
22
Views
968
  • Electromagnetism
Replies
17
Views
2K
Replies
8
Views
1K
Replies
3
Views
590
  • Electromagnetism
Replies
1
Views
598
Replies
73
Views
3K
Replies
2
Views
967
Replies
8
Views
757
Back
Top