Complex RLC Circuit Problem (System of diff eqs)

  • #1
milkism
118
15
Homework Statement
I need to find the six currents I_i(t) via a system of diff eqs.
Relevant Equations
V=IR, Q=CV, etc
The following circuit is:
1701517638743.png

Going clockwise the current ##I_1## goes through resistor ##R_1## and voltage ##V_11##. Current ##I_2## goes through capacitator ##C_1## and ##R_2##.
Current ##I_3## goes through resistors ##R_3## and ##R_4##. Current ##I_4## goes through resistor ##R_5##, but from left to right.
Current ##I_5## goes through the inductor ##L_1## from right to left. And current ##I_6## goes through the voltage ##V_2## from under to above.
I have found the initial values of the currents, when the capacitator acts like a perfect a conductor.
$$I_1 = 0.57$$, $$I_2 = 1.20$$, $$I_3 = 0.57$$, $$I_4 = -0.63$$, $$I_5 = 0$$ and $$I_6 = 0.63$$.
I have gotten these results through these equations:
$$I_2=I_1+ I_6$$, $$V_1 = I_1 ( R_1 + R_3 + R_4) + I_2 * R_2$$, $$V_2 = I_2 * R_2 + I_6 * R_5$$, $$I_1 = I_3$$, $$I_5 = 0$$, $$I_6 = -I_4$$.
For final I have:
$$I_1 = 0.35$$, $$I_2 = 0$$, $$I_3 = 0$$, $$I_4 = 0$$, $$I_5 = 0.35$$ and $$I_6 = -0.35$$.
I have gotten these results through these equations:
$$I_5 + I_3 = I_1$$, $$-I_5 -I_6 - I_4 = 0$$, $$V_1 - V_2 = I_1 * R_1$$, $$V_1 - V_2 = I_1 * R_1 + I_4 * (R_3 + R_4 + R_2)$$, $$I_2 = 0$, $I_4 = I_3$$.
Now the question is, to find the currents at any time. For the top-left branch I got differential equation:
$$V_1 - V_2 = I_1 * R_1 + L \frac{dI_5}{dt}$$ or $$V_1 - V_2 = \frac{dQ_1}{dt} * R_1 + L \frac{d^2Q_5}{d^2t}$$
For top-right branch I got:
$$V_2 = \frac{1}{C} \int I_2 dt + I_2 * R_2 - I_4 * R_5$$ or $$V_2 = \frac{Q_2}{C} + \frac{dQ_2}{dt} R_2 - \frac{dQ_4}{dt} * R_5$$
For the rectangular branch below I got (going clockwise)
$$0=- L \frac{dI_5}{dt} + I_4 * R_5 + I_3 * (R_3 + R_4)$$ or $$0=- L \frac{d^2 Q_5}{d^2t} + \frac{dQ_4}{dt} * R_5 + \frac{dQ_3}{dt} * (R_3 + R_4)$$
I can make an another loop for the outer branch, but you can see each differential equation depends on too many time-dependant variables. So I really have no idea to do!
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Have you tried using Laplace Transforms? Are they saying that both voltage sources switch on at time zero?
 
  • #3
scottdave said:
Have you tried using Laplace Transforms? Are they saying that both voltage sources switch on at time zero?
I can solve the differential equations with python. And yes both voltages switch on at time zero.
 
  • #4
What do you need help with?

Does the python package solve it numerically or analytically?
 
Last edited:
  • #5
scottdave said:
What do you need help with?

Does the python packages solve it numerically or analytically?
I need help to find enough differential equations to solve for the 6 currents.
 
  • #7
Was this helpful @milkism ? Try making an eqauation for the bottom loop.

Which node equations are helpful?

I am curious, what python packages were you using?
 
Last edited:
  • Like
Likes SammyS

Similar threads

  • Engineering and Comp Sci Homework Help
Replies
5
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
15
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
308
  • Engineering and Comp Sci Homework Help
2
Replies
36
Views
3K
  • Engineering and Comp Sci Homework Help
Replies
23
Views
2K
  • Introductory Physics Homework Help
Replies
16
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
12
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
11
Views
2K
  • Engineering and Comp Sci Homework Help
Replies
2
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
1
Views
1K
Back
Top