Compare the ratio of two times t1/t2 in this vertical jump

  • #1
Clockclocle
25
1
Homework Statement
In the vertical jump, an athlete starts from a crouch and
jumps upward as high as possible. Even the best athletes spend little
more than 1.00 s in the air (their “hang time”). Treat the athlete as a
particle and let ymax be his maximum height above the floor. To explain
why he seems to hang in the air, calculate the ratio of the time he is
above ymax>2 to the time it takes him to go from the floor to that height.
Ignore air resistance.
Relevant Equations
y=(v0)t - 1/2g(t^2)
Here is my attempt. At ymax the velocity turn to zero so we get time t*=v0/g and ymax=1/2 (v0^2/g). At the height y max, since the velocity at this point is 0, i get another equation y= 1/2(v0^2/g)-(g/2)t^2, this equation could be considered as continuation of first equation. Set ymax/2=1/4 (v0^2/g)=1/2(v0^2/g)-(g/2)t^2, I get t=(v0)/(sqrt(2)g) or t =-(v0)/(sqrt(2)g). the negative solution can be thought that the athletes was in ymax/2 v0/(sqrt(2)g second before. so the total time he is above ymax/2 t1==(v0)/(sqrt(2)g)-(-(v0)/(sqrt(2)g))=2(v0)/(sqrt(2)g), and time it take him to ymax/2 is t2=v0/g-(v0)/(sqrt(2)g). So the t1/t2=2sqrt(2)+1. Is it legal to say that t =-(v0)/(sqrt(2)g) is the time before the free fall at ymax happens?
 
Physics news on Phys.org
  • #2
Clockclocle said:
So the t1/t2=2sqrt(2)+1.
You seem to be taking the ratio of the time above half height to the time to reach half height. Is that fair? Also, I think you mean 2 (sqrt(2)+1).
Clockclocle said:
Is it legal to say that t =-(v0)/(sqrt(2)g) is the time before the free fall at ymax happens?
Your equation
Clockclocle said:
y= 1/2(v0^2/g)-(g/2)t^2
effectively defines t as a time measured, forwards or backwards, from the time at which max height is reached.
 
  • #3
yes the answer is 2 (sqrt(2)+1). So is it true?
 
  • #4
Clockclocle said:
yes the answer is 2 (sqrt(2)+1). So is it true?
Yes, but don't you need to compare the time above half height with all of the time below half height, not just half of it?
 

Similar threads

  • Introductory Physics Homework Help
Replies
22
Views
471
  • Introductory Physics Homework Help
Replies
3
Views
360
  • Introductory Physics Homework Help
Replies
13
Views
1K
  • Introductory Physics Homework Help
Replies
34
Views
771
  • Introductory Physics Homework Help
Replies
25
Views
510
  • Introductory Physics Homework Help
Replies
3
Views
620
  • Introductory Physics Homework Help
Replies
29
Views
7K
  • Introductory Physics Homework Help
2
Replies
38
Views
2K
  • Introductory Physics Homework Help
Replies
6
Views
284
  • Introductory Physics Homework Help
Replies
7
Views
2K
Back
Top