Particle on a ring (components in the postion basis)

In summary: Bigr)$$In summary, the conversation discusses two tasks, b and g, related to calculating the state of a particle on a ring. The individual steps and calculations for task b are provided, but the individual is stuck and unsure how to proceed. For task g, the individual is also stuck and seeking help. They continue to work through the problem by changing a summation index and reducing the sum to one term. The conversation ends with the individual thanking the other person for their help.
  • #1
Lambda96
172
63
Homework Statement
see screenshots
Relevant Equations
none
Hi,

I have problems with the task part b and g

To solve the task, we have received the following information

Bildschirmfoto 2023-06-14 um 19.14.36.png


Task b
Bildschirmfoto 2023-06-14 um 20.03.21.png


First, I wrote down what the state ##\psi## looks like

$$\psi=\frac{1}{\sqrt{N}} \sum\limits_{k}^{} \psi_k$$
$$\psi=\frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{j}^{} e^{ikaj} \vec{e}_j$$

Then I to calculate ##\psi^j=\braket{\vec{e}_j|\psi}##.

$$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{j}^{} e^{ikaj} \vec{e}_j$$

$$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{N} \sum\limits_{k}^{} \sum\limits_{j}^{} e^{ikaj} \vec{e}_j$$
Now I unfortunately do not know how to proceed further. But I don't understand, if all momentums are equally probable, why the particle should be 100% at location N and not at other locations like 1 and 2 and so on. What makes the point N so special that the particle should be there in contrast to the other points?

To solve task g, we have received the following information
Bildschirmfoto 2023-06-14 um 19.25.16.png


Task g
Bildschirmfoto 2023-06-14 um 19.15.43.png

If I understood the task correctly, then the wave function is collapsed, to the eigenvector of the momentum operator, more precisely to ##\psi_0##. The wave function has with 100% the eigenvalue of ##\psi_0## after the uncertainty principle, the uncertainty would have to become extremely large concerning the position, which means that the particle can be everywhere on the ring and thus the probability for each position is equally large.
 
Last edited:
Physics news on Phys.org
  • #2
Lambda96 said:
$$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{j}^{} e^{ikaj} \vec{e}_j$$
In the second sum on the right, you should change the summation index ##j## to some other symbol so that the summation index is not confused with the ##j## in ##\vec{e}_j^{\dagger}##. For example, you could write $$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{l}^{} e^{ikal} \vec{e}_l$$
 
  • Like
Likes Lambda96
  • #3
Thanks TSny for your help 👍, I have now changed the index of the summation from ##j## to ##l## and have now calculated the following.

$$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{l}^{} e^{ikal} \vec{e}_l$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \sum\limits_{k}^{} \sum\limits_{l}^{} e^{ikal} \vec{e}_j^{\dagger} \cdot \vec{e}_l$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \sum\limits_{k}^{} \sum\limits_{l}^{} e^{ikal} \delta_{jl}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \sum\limits_{k}^{} e^{ika} \delta_{j1}+e^{2ika} \delta_{j2}+ \ldots +e^{Nika} \delta_{jN}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \Bigl( e^{ia} \delta_{j1}+e^{2ia} \delta_{j2}+ \ldots +e^{Nia} \delta_{jN}+e^{2a} \delta_{j1}+e^{4ia} \delta_{j2}+ \ldots +e^{2Nia} \delta_{jN}+ \ldots + e^{Nia} \delta_{j1}+e^{2Nia} \delta_{j2}+ \ldots +e^{N^2ika} \delta_{jN} \Bigr)$$

$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \Bigl(\Bigl(e^{ia}+e^{2a} +\ldots+e^{Nia} \Bigr) \delta_{j1}+\Bigl( e^{2ia}+e^{4ia}+ \ldots +e^{2Nia} \Bigr)\delta_{j2}+ \ldots + \Bigl( e^{Nia}+e^{2Nia} + \ldots +e^{N^2ika} \Bigr)\delta_{jN}\Bigr)$$

Now I'm stuck 🙃

The individual entries in the brackets look almost like states ##\vec{\psi}_k##, i.e.

$$\braket{\vec{e}_j|\psi}=\frac{1}{\sqrt{N}} \Bigl(\frac{1}{\sqrt{N}} \Bigl(e^{ia}+e^{2a} +\ldots+e^{Nia} \Bigr) \delta_{j1}+\frac{1}{\sqrt{N}} \Bigl( e^{2ia}+e^{4ia}+ \ldots +e^{2Nia} \Bigr)\delta_{j2}+ \ldots + \frac{1}{\sqrt{N}} \Bigl( e^{Nia}+e^{2Nia} + \ldots +e^{N^2ika} \Bigr)\delta_{jN}\Bigr)$$

$$\braket{\vec{e}_j|\psi}=\frac{1}{\sqrt{N}} \Bigl(\vec{\psi}_1 \delta_{j1}+\vec{\psi}_2 \delta_{j2}+ \ldots + \vec{\psi}_N \delta_{jN}\Bigr)$$

Now does it mean that if, for example, ##\vec{e}_j=\vec{e}_2##, that only the state ##\braket{\vec{e}_2|\psi}=\frac{1}{\sqrt{N}} \Bigl(\vec{\psi}_2 \delta_{22}\Bigr)## remains and the particle is at location 2?
 
  • #4
Lambda96 said:
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \sum\limits_{k}^{} \sum\limits_{l}^{} e^{ikal} \delta_{jl}$$
Good. Consider the sum $$ \sum\limits_{l}^{} e^{ikal} \delta_{jl}$$Since ##\delta_{jl}## equals zero for any ##l \neq j##, all of the terms in the summation are zero except for one term. So, the sum reduces to one term that can be written in terms of ##k##, ##a##, and ##j##.
 
  • Like
Likes Lambda96 and vanhees71
  • #5
Thanks TSny for your help 👍👍

Then I can write the term as follows

$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} \sum\limits_{l}^{}e^{ikal} \delta_{jl}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} e^{ikaj}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\Bigl( e^{iaj}+e^{2iaj}+e^{3iaj}+ \ldots +e^{Niaj} \Bigr)$$
 
  • #6
Lambda96 said:
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} \sum\limits_{l}^{}e^{ikal} \delta_{jl}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} e^{ikaj}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\Bigl( e^{iaj}+e^{2iaj}+e^{3iaj}+ \ldots +e^{Niaj} \Bigr)$$
Good, except the sum over ##k## does not go from ##k = 1## to ##k = N##. Recall that the values of ##k## are ##k = 2\pi n /L## for ##n = 0, 1, 2, ... , N-1##.
 
  • Like
Likes Lambda96 and SammyS
  • #7
Thanks again for your help TSny👍👍 👍, also thanks for the hint with the index ##k## 👍

Could I then write the second line as follows?$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} e^{ikaj}$$

$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{n=0}^{N-1} e^{\frac{2i \pi n a j}{L}}$$
 
  • #8
Lambda96 said:
Thanks again for your help TSny👍👍 👍, also thanks for the hint with the index ##k## 👍

Could I then write the second line as follows?$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} e^{ikaj}$$

$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{n=0}^{N-1} e^{\frac{2i \pi n a j}{L}}$$
Yes, that looks right.
 
  • Like
Likes Lambda96
  • #9
Thanks for your help TSny 👍👍👍
 
  • #10
You’re very welcome.
 
  • Like
Likes Lambda96

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
766
Replies
1
Views
581
  • Advanced Physics Homework Help
Replies
4
Views
781
  • Advanced Physics Homework Help
Replies
0
Views
441
  • Advanced Physics Homework Help
Replies
1
Views
762
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Calculus and Beyond Homework Help
Replies
6
Views
821
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
24
Views
1K
Back
Top