Finding the constants of the general approximate solution to a double pendulum

  • Thread starter giovanna
  • Start date
  • Tags
    Functions
  • #1
giovanna
1
0
Homework Statement
Given the (approximate) general solution to the double pendulum, find the constant $A_1$, $A_2$, $\delta_1$ and $\delta_2$ by stating some initial conditions for the double pendulum.
Relevant Equations
$\phi(t) = A_1 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} \cos(\omega_1 t - \delta_1) + A_2 \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix} \cos(\omega_2 t - \delta_2)
$
EDIT: My Latex is not showing... Sorry. I attached a file with my "solution".

I though this would be quite easy, but I can't seem to solve this system of equations. Should I solve for each mode, or both of them together? I tried to solve them together, here's how far I get:

double.png

$\text{General solution:} \\

\phi(t)=A_1\binom{1}{\sqrt{2}}\cos\left(\omega_1t-\delta_1\right)+A_2\binom{1}{-\sqrt{2}}\cos\left(\omega_2t-\delta_2\right)

\text{Expanding the components, we get} \\

\phi_1(t)=A_1\cos\left(\omega_1t-\delta_1\right)+A_2\cos\left(\omega_2t-\delta_2\right) \\
\phi_2(t)=\sqrt{2}A_1\cos\left(\omega_1t-\delta_1\right)-\sqrt{2}A_2\cos\left(\omega_2t-\delta_2\right)

\text{Neglecting the amplitudes, this can be written as} \\

\phi_1(t)=A_1\cos\left(\omega_1t-\delta_1\right)+A_2\cos\left(\omega_2t-\delta_2\right) \\
\phi_2(t)=A_1\cos\left(\omega_1t-\delta_1\right)-A_2\cos\left(\omega_2t-\delta_2\right)

\text{Differentiating, we obtain} \\

\dot{\phi}_1(t)=-\omega_1A_1\sin\left(\omega_1t-\delta_1\right)-\omega_2A_2\sin\left(\omega_2t-\delta_2\right) \\
\dot{\phi}_2(t)=-\omega_1A_1\sin\left(\omega_1t-\delta_1\right)+\omega_2A_2\sin\left(\omega_2t-\delta_2\right)

\text{To find the particular solution, we need to determine } A_1, A_2, \delta_1, \text{ and } \delta_2. \text{ Choosing the initial conditions} \\

\phi_1(0)=\phi_2(0)=\frac{\pi}{6} \\
\dot{\phi}_1(0)=\dot{\phi}_2(0)=0

\text{We obtain a system of equations with four equations and four unknowns:} \\

A_1\cos(\delta_1)+A_2\cos(\delta_2)=\frac{\pi}{6} \\
A_1\cos(\delta_1)-A_2\cos(\delta_2)=\frac{\pi}{6} \\
-\omega_1A_1\sin(\delta_1)-\omega_2A_2\sin(\delta_2)=0 \\
-\omega_1A_1\sin(\delta_1)+\omega_2A_2\sin(\delta_2)=0

\text{Since } \cos(-x)=\cos(x) \text{ and } \sin(-x)=-\sin(x), \text{ we can rewrite this as} \\

A_1\cos(\delta_1)+A_2\cos(\delta_2)=\frac{\pi}{6}\ (1) \\
A_1\cos(\delta_1)-A_2\cos(\delta_2)=\frac{\pi}{6}\ (2) \\
\omega_1A_1\sin(\delta_1)+\omega_2A_2\sin(\delta_2)=0\ (3) \\
\omega_1A_1\sin(\delta_1)-\omega_2A_2\sin(\delta_2)=0\ (4)$
 
Physics news on Phys.org
  • #2
Your LaTex is unreadable. You should preview it and edit as necessary before posting. (You probably need to reload your post page in your browser before you can see your LaTex rendered properly.)
 

Similar threads

  • Introductory Physics Homework Help
Replies
11
Views
704
  • Introductory Physics Homework Help
Replies
4
Views
294
  • Introductory Physics Homework Help
Replies
6
Views
218
  • Introductory Physics Homework Help
Replies
13
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
702
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
973
  • Introductory Physics Homework Help
Replies
4
Views
269
  • Introductory Physics Homework Help
Replies
6
Views
319
Back
Top