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Abstract:

A design experiment utilizing multiple representations of linear and nonlinear phenomena
to facilitate students’ understandings of classical and modern physics concepts was
conducted.  Over the course of nine 50-minute instructional periods in January 2006, an
enthusiastic, ethnically diverse group of 33 high school students in the San Francisco Bay
area participated in a curriculum designed by this author.  All students were finishing
their first semester of physics with the author as their teacher.  Prior to the educational
intervention, students were surveyed about their epistemological views on predictability
in physics, the limitations of measurement, sensitivity to initial conditions, and holism
versus reductionism.  Students engaged in multiple inquiry-based investigations in the
physics of systems, which included hypothesis generation, experimental design, graphical
representations, and using calculators and Boxer-based computer simulations as
experimental tools (diSessa, 1995, 2000).  Calculators were utilized to employ iteration
algorithms demonstrating sensitivity to initial conditions (Burger and Starbird, 2000).
After experimenting with simple pendulums, students constructed nonlinear, magnetic
chaotic pendulums and used them in experiments investigating the dynamics of chaotic
systems.  In the final week of the intervention, small groups of students engaged in
scaffolded inquiry with Boxer providing a computer representation of the chaotic
pendulum.  Throughout the curriculum, qualitative data was obtained through student
interviews and written responses on worksheets.  Post-assessments surveys of students’
knowledge of nonlinear dynamics were statistically contrasted with pre-assessments,
providing quantitative data to supplement qualitative findings.  Overall, there is evidence
that the educational intervention helped students understand modern physics concepts in
chaos theory and changed students’ epistemological beliefs regarding how much is
possible to know about a system.
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Introduction

Traditionally, the first semester of high school physics is devoted to elementary
classical mechanics.  Common physical phenomena such as projectile motion and
collisions are modeled algebraically.  Approximate, or ideal models of physical systems
are made in the process of modeling them mathematically; e.g., small forces are
neglected and numbers are rounded.  Underlying these approaches is the assumption that
small differences in the initial values of a problem’s critical variables will not result in
drastically different results later in time.  Some historians of science have noted that this
assumption—that arbitrarily small influences cannot have arbitrarily large effects—was
once the “basic idea of Western science” (Gleick, 1987).  In the second half of the 20th

century, numerous physicists, mathematicians, chemists, and meteorologists working in
the realm of nonlinear dynamics proved that this assumption is not true for all physical
systems.  Systems for which the assumption does not hold were dubbed “chaotic,” and
can behave unpredictably.

Can high school students understand modern physics concepts like “sensitivity to
initial conditions” by engaging in classroom experimentation?  Duit and Komorek (1997,
2001) have had success doing so.  This research project attempts to duplicate their
findings.  It also attempts to see if students’ views on the degree to which physical
systems are predictable can be influenced by an educational intervention.  An
overarching interest motivating this project was the effect to which traditional physics
curricula give students the impression that all systems are predictable.  An alternative
epistemological position suggested by chaos theory is that some systems are inherently
unpredictable because they are infinitely sensitive to their fundamental parameters.  Does
traditional physics education give students the wrong impression of the epistemology of
systems?  Answering such a question might involve surveying students before they begin
studying physics, and again when they have finished.  In this research project, students
were not surveyed prior to instruction in physics, but after having completed the first
semester of an intermediate level high school physics course.  Then, students participated
in an educational intervention in which they investigated a chaotic algorithm in
mathematics, a chaotic system in the laboratory, and a computer simulation of this system
written in the Boxer programming language (diSessa, 2000).  Afterward, data from
students’ post-assessment surveys indicated the extent to which students’ views on the
nature of the physical world changed by conducting investigations in the physics and
mathematics of nonlinear systems.
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What is a Chaotic System?

A chaotic system is defined as one that shows sensitivity to initial
conditions. That is, any uncertainty in the initial state of the given system,
no matter how small, will lead to rapidly growing errors in any effort to
predict the future behavior…In other words, the system is chaotic. Its
behavior can be predicted only if the initial conditions are known to an
infinite degree of accuracy, which is impossible  (Gollub and Solomon,
1996).1

“Chaos” derives from the Greek word “caoz,” meaning vast chasm or void.
Chaotic systems are dynamical2 systems that, under specific parameter values, can be
unpredictable.  Though used extensively in science, the term “system” is difficult to
define.  In general, a “system” is an ensemble of related elements comprising a whole.
Elmer (2002) defines “system” as “a self-contained entity, or an abstract mathematical
model for such an entity,” and lists the pendulum as an archetypical example.
Mathematically, the dynamics of chaotic systems cannot be described using linear
differential equations.  Prior to computers, nonlinear differential equations were
extremely difficult to solve, so physicists preferred to base their theories on linear
differential equations.  In the late 19th and early 20th centuries, electrodynamics and
quantum mechanics were successfully developed using linear differential equations.   By
the 1950s the physics of microscopic atomic scales was being applied to engineering, but
physical phenomenon closer to everyday experience, such as turbulence and fluid
dynamics, were still poorly understood.  Like the weather and an organism’s success in
an ecosystem, turbulence and fluid dynamics are nonlinear processes.

In the early 1960s, Edward Lorenz, an MIT meteorologist, used a computer and a
simple system of nonlinear equations to model convection in the atmosphere.  To his
surprise, Lorenz found that systems with only a few variables can display highly
complicated, unpredictable behavior.  Meteorological outcomes in Lorenz’s model were
extremely dependent on slight differences in the initial value of one variable, and the
model accurately described real-world phenomena.  Linear meteorological models
quickly became obsolete.  In his seminal 1963 paper, Lorenz introduced the phrase
“sensitivity to initial conditions” and wrote about how a butterfly flapping its wings in
Beijing could theoretically affect the weather thousands of miles away several days later.
Thus, sensitivity to initial conditions came to be known as “the Butterfly Effect.”

The scientific community came to a consensus that most systems in the real world
are nonlinear to some extent, and can exhibit chaotic behavior under certain
circumstances.  Examples include the weather, generational fluctuations in biological
populations, fluid flow, turbulence, mechanical and electrical oscillatory phenomena,
heart and brain activity, planetary orbits, economies, and plate tectonics.  Sensitivity to

                                                  
1 Dr. Jerry Gollub was one of my physics professors as a Haverford College
undergraduate, and was consulted as an advisor to this project.  His work is cited in
Gleick (1987) and Briggs and Peat (1990).
2 changing in time
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initial conditions can occur without chaos as well: simply multiplying two slightly
different small numbers by an extremely large number will result in two divergent
products.  However, if a system is mathematically “bounded,” meaning that its variables
stay within a finite range, sensitivity to initial conditions will result in chaotic behavior.
Chaotic behavior is also transitive; “transitivity” means that, given enough time, any
trajectory in phase space will pass through all points within its bounds with equal
probabilities (Nemirovsky, 1993).  In thermodynamics, this is known as the “ergodic
hypothesis.”

Previous Educational Research

Jonassen et al. (1997) states that chaos theory is a scientific perspective that calls
into question “many traditional assumptions about learning systems,” but his research
concerns applying chaos theory to instructional design itself.  Ironically, academic
journal searches for “chaos” return more articles attempting to apply modern physics
concepts to educational research itself than ones that discuss how to teach chaos theory in
physics classrooms.  The few curricular treatments of chaos theory that have been
discussed in educational research literature are documented here.

Ricardo Nemirovsky (1993) had students investigate a Lorenzian Water Wheel, a
rather complicated nonlinear system.  He found that students expressed several intuitions.
One was that periodic regimes are the basic modes of behavior:  "If a few irregularities
appeared, they dismissed them as exceptions, imperfections, or little mistakes.  The
students felt that the irregularities had to be explained.  It was as if periodic motion was
natural and unproblematic, whereas irregularities were puzzling…the students explained
that the water wheel was predictable only to the extent that its motion was periodic.
When no periodic pattern was discernible, students experienced ‘tensions.’”
(Nemirovsky, 1993).  This result was used to help formulate hypotheses H1, H2, and H3
below.

Another intuition Nemirovsky found was that a big number of affecting variables
causes erratic change: "George expressed that something is unpredictable when it is
affected by too many variables,” like the weather; however, a student named Oscar
disagreed: “but the wheel displays both periodic and non-periodic behavior without
changing the number of variables” (Nemirovsky, 1993). George’s intuition helped form
the basis of sub-hypotheses H2f below.

Another intuition was that hidden periodicities underlie all irregularities.  Ana and
Paul stated that, “a system with a small number of degrees of freedom (perceived as
controllable) eventually has to become periodic or predictable” (Nemirovsky, 1993).
This intuition helped form the basis of sub-hypotheses H2a below.  Other students stated
that irregular trajectories reflect discrete randomness (see H2g below).  Nemirovsky also
found that some students learned that trajectories are determined by the initial conditions
(see hypothesis H4 below) and that unstable behavior may be due to being in the border
between two regimes in a region of unstable equilibrium.

Adams and Russ (1992) conducted a unit of study for gifted fourth and fifth
graders about mathematical periodicity and chaos and the underlying physical processes
that produce these phenomena.  Hands-on activities, data analysis tools and computer
aids were used for instruction in simple periodic motion (as in the pendulum), complex



5

superposition of motions (in vibrations), and chaotic sequences (in stock prices).  Their
results indicate that young students were able to understand these concepts to a certain
extent.

A reason for teaching about modern physics has been identified by Italian
researcher Olivia Levrini (2006).  She found that high school physics students preferred
learning about abstract concepts in quantum mechanics more compared to learning about
less abstract, traditional physics concepts.  This may be because students are more
interested in the philosophical implications of modern physics.  Chaos theory certainly
has many philosophical implications.

Several articles in The Physics Teacher describe attempts to introduce chaotic
pendulums into the classroom for teaching about chaos.  Cassoro et al. (2004) attached a
spark generator to a magnetic pendulum to record evidence of its chaotic trajectory on
thermally activated paper.  Oliver (1999) recorded students’ qualitative explorations of
the interaction between gravitational potential energy, magnetic potential energy, and
kinetic energy by studying a magnetic pendulum’s chaotic behavior.

In 1993, Cornilsen, a student teacher in Germany, embarked on a research project
similar to the one described in this thesis.  In “The Magnetic Pendulum as a Way to
Understand the Basic Idea of Chaos Theory”  (a Master’s project), Cornilsen indicated
that he had students read two pages about chaos theory from a new physics text.
Students had to answer questions about it.  One week later, they were interviewed about
the magnetic pendulum, which was not explained in the text.  Results showed that Grade
10 students are able to understand the basics of chaos theory, and opened the door to
further research about teaching chaos theory in high school.

German educational researchers Reinders Duit, Michael Komorek, and Jens
Wilbers at the Institute for Science Education (IPN), University of Kiel, Germany, have
conducted the majority of published research in this field.  They state that, “...so far, there
appear to be no studies available that address the learners' preinstructional point of view.
[Chaos theory] challenges the idea of the deterministic predictability of natural events
which is paradigmatic in traditional physics” (Duit & Komorek, 1997).  Their findings
show how students changed their minds about predictability, and that curriculum teaching
chaos theory at the high school level can be successful. 3

Komorek, Duit, Bucker and Naujack collaborated in a 2001 article about students’
“Learning Process Studies in the Field of Fractals,” focusing on the question of whether
the core ideas of chaos theory and fractals “can be understood by students at the age of
15-17.”  These researchers note that studies on how students learn about nonlinear
systems through new teaching materials (like experiments) are “almost non-existent.”
The German researchers view their work as “preliminary,” but their results encourage
them in their attempts to make the core ideas accessible to 15-16 year old students.”
Students experimented with fractal patterns created through electrolysis.  When the
experiment was repeated, the same fractal pattern formed.  Students were interviewed,
and described the pattern as “random.”  Regarding students’ differing conceptions of
“random,” Komorek, et al. (2001) found one group of students who believed that due to a
large number of variables, a system’s behavior only appears to be random, but is actually
deterministic.  They were not surprised when the same pattern repeated.  A second group

                                                  
3 See http://www.ipn.uni-kiel.de/abt_physik/nlphys/index_eng.html
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believed that random behavior is irregularity, and not determined by principle.  However,
these students did not question why a similar pattern arose twice.

Researchers at IPN in Kiel use a three-part framework that includes analysis of
content structure, empirical investigations, and the continuous reevaluation of the
construction of educational models.  In accordance with the constructivist
epistemological position, they assume there is no 'true' content structure of a particular
content area.  "What is commonly called the content structure is the consensus of the
particular scientific community.  Every presentation of the consensus [even in textbooks]
is an idiosyncratic reconstruction by the referring author informed by the specific aims
the author explicitly or implicitly holds.”  Texts are analyzed “to reconstruct content
structures in such a way that 'elementary' features [key ideas] are emphasized” (Duit &
Komorek, 1997).  A similar process was followed when the curricular intervention was
developed for this research project.

The Patterns Project

“A pattern is an identifiable structure with a particular set of
relationships that is quite general and surprisingly powerful for
explaining and analyzing phenomena in the world.”

This research project has been inspired and guided by the Dr. Andrea A.
diSessa’s Patterns Research Group at the University of California, Berkeley School of
Education.  Coming from the background of conceptual change research, the “Patterns of
Change and Control” project seeks to identify the basic patterns in physics and use them
to teach physics concepts.  From the perspective of the Patterns Group, chaos is a pattern,
as are oscillation, stability, balancing, equilibration, randomness, threshold, and
resonance.  These patterns share the qualities of context independence (generality),
explanatory power, the ability to be modeled mathematically, and inherent simplicity.
Students are given hands-on examples and interactive Boxer-based simulations and their
actions and comments are recorded.  Analysis of videotaped evidence seeks to identify
students’ thinking about a pattern and the ways in which they might come to better
understand it.  Understanding a pattern means seeing its defining features (it essence),
identifying what it includes and what it does not (its extension), modeling the patterns’
relations, and the pointing out important differences between different embeddings of the
same pattern.

Since patterns are context independent, they can be represented in multiple ways,
and have “ multiple embodiments.”  DiSessa believes that a beneficial educational task is
to give students the opportunity to look at a number of different situations that embody
the same concept or pattern.  Concrete, specific knowledge of a wide range of situations
is necessary for understanding a pattern (diSessa, 2005).  By presenting students with
several different examples of the same pattern, similarities and differences between
multiple embodiments are illuminated, allowing conceptual change to occur.

DiSessa’s view contrasts with the dominant view in the field of cognitive
psychology: that students presented with several examples of the same general idea are
able to overlook the differences and focus only on the similarities between these multiple
approaches.  In contrast, diSessa argues that, the concrete, situation specific details in



7

each embodiment are extremely important in students' constructions of conceptual ideas.
While it is certainly valuable to compare representations, the details of any single
presentation of a pattern cannot be overlooked.  In practical terms, this means that
students must be presented with multiple embeddings in order to truly understand the
pattern; one example is not sufficient.

Taking diSessa's view into account means that technology can best be utilized in
conjunction with other representational forms, such as a real-world, laboratory-based
approach and/or a theoretical, mathematics-based approach.  The details specific to each
representation should not be swept under the rug; rather, students' understandings are
enhanced and conceptual change occurs best when each approach is presented (and
constructed in students' minds) as one valid perspective among multiple perspectives on a
larger, overarching metaconcept.  Since it can be argued that the perspective that students
gain from a technologically enhanced educational support will always differ from the
alternative perspectives more traditional supports provide, technology has the potential to
widen learners' ways of looking at scientific and mathematical ideas, in turn providing a
basis for deeper understanding.

In this project, and the patterns project in general, the use of computer simulations
is not gratuitous.  Simulations are necessary to highlight a key concept in nonlinear
dynamics: deterministic unpredictability. By analyzing a real-world chaotic system such
as a magnetic pendulum, double pendulum, or chaos bowl, it is fairly easy for students to
see that within certain ranges of starting points (initial conditions), that future behavior is
unpredictable. However, the fact that these systems are also deterministic is impossible to
see without a computer simulation. The reason for this is that chaotic systems can be
described by their extreme sensitivity to initial conditions. The degree of sensitivity is
infinite. The initial conditions must be exactly the same -- to an infinite number of
decimal places -- in order for the system's trajectory (the path of the ball or the pendulum
bob) to be the same.  In practice, it is impossible to pick two starting points that lie in
exactly the same position. Thus, in traditional labs, students never see the same trajectory
twice. Without a computer simulation, students may grasp the concept that some systems
are unpredictable, yet not see that the system's trajectories are completely determined by
initial conditions.  Thus, some students may inaccurately conclude that chaotic
trajectories are random or based on probability functions, which is not true.

One of the goals of this project was to facilitate in students an understanding that
chaotic behavior is unpredictable, yet deterministic.  In order for a meaningful prediction
to be made, conditions must be known to an infinite degree of precision, which, in
practice, is impossible.  This concept is both philosophically interesting and fundamental
to understanding the nature of chaos.

Participants

This project was devised, organized and conducted by the author when he was a
student teacher in a San Francisco Bay Area physics classroom.  A cooperating teacher
was present, but chose not to participate in this research.  The author taught for one
period each day in the cooperating teacher’s classroom.   During this period, 33 students
were instructed, and 33 participated in this research project.  22 students were in 11th



8

grade, and eleven were in 12th grade.  26 students were male and seven were female.   No
students had identified special needs or disabilities.

Students’ backgrounds and abilities in mathematics and science were in the
intermediate range for their school.  There were two other physics classes offered at the
high school: Conceptual Physics, which is for students weaker in math, and AP physics,
which is for students stronger in math.  The prerequisites for the intermediate level class
of students participating in this research are: (1) having passed chemistry, (2) a C or
better in algebra II, or (3) to be currently taking those classes.  Although the 33 student
participants had experience in algebra, some were still experiencing difficulties with it.

Socially, the students did a satisfactory job working with others.  For the group
work portions of the educational intervention, groups were assigned based on
observations of students’ social dynamics.  As was the case in class, students had no
observed difficulties getting along with each other that were severe enough to interfere
with their learning processes.  Throughout the project, participants communicated with
each other extensively, although conversations were not always on topic.

This research was conducted in one of the most ethnically diverse high schools in
the United States.  In the project, students groups were all ethnically heterogeneous.
From surveys given on the first day of class, four students identified Vietnamese as a
language spoken in the home.  One listed Cambodian, five listed Tagalog, three listed
Chinese, two listed Spanish, and one listed Arabic as languages spoken in the home.
Students’ ethnicities were never officially documented, but three students appeared to be
of mostly European descent, one appeared to be East Indian, one appeared to be Latino,
and one appeared to be African American.  The most common ethnicity was Filipino.
Several students were of mixed ethnicities, and several were first generation Americans.

All students were designated to be proficient English speakers, but 17 students
(52%) indicated on a first day of class survey that in the home they speak a language
other than English, or in addition to English.  Some students did not answer the question,
so the actual number may be higher. Although none were officially recognized as ELL or
ESL students, some students had major difficulties writing and speaking English.  No
linguistic resources or information about students’ backgrounds were provided to the
teacher.

Setting

The community in which the research was conducted is one of the most ethnically
diverse in the United States.  Overall, the community’s support for education is high.
There are a large number of immigrants in the community, but the community’s diversity
is not completely due to recent immigration; many families of many different ethnicities
having been living in the area for several generations.  The community is not as poor as
others in the San Francisco Bay area, but pockets of poverty, linguistic isolation, and low
educational attainment rates mark it.  In its largest census tract, 54% of the adults over the
age of 25 do not have a high school degree, and 30% of these did not reach the ninth
grade.

The high school in which this research was conducted is one of the largest in the
United States.  It has over 4000 students, and its “population status” is the “Urban Fringe
of a Large City,” according to the California Department of Education.  Almost 80% of
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its students are of color, with over 20% from immigrant families.  There are 1091
students in 9th grade, 1053 in 10th grade, 1132 in 11th grade, and 973 in 12th grade.  769
classes are held at the school, and the average class size is 31.0.  There are 1383
computers at the school and an average of 3.2 students per computer.  159 classrooms
have Internet access.  In the 2004/2005 school year, the school’s API base was 692, and
its statewide rank was 6, slightly above average.   Similar schools ranked 3.  In
2004/2005, 12% of the school’s students were African American, 23% were Asian, 19%
were Filipino, 26% were Latino, 2% were Pacific Islander, and 17% were white (not of
Hispanic origin).  25% of students participated in the free or reduced price lunch
program, NSLP.  In the physics classroom in which this research was conducted, there
were six functioning computers.

The author began teaching non-calculus based physics to the 33 student
participants on the first day of the 2005-06 school year in early September, 2005.  The
research was conducted in January, 2006.  Prior to beginning the research, the author had
covered chapters 1 through 11, or pages 1 through 240, in Merrill Physics: Principles and
Problems by Paul W. Zitzewitz, et. al.  From September 2005 to January 2006, the
following topics were taught: “What is Physics?,” “A Mathematical Toolkit,”
“Describing Motion: Velocity,” “Acceleration,” “Forces,” “Vectors,” “Motion in Two
Dimensions,” “Universal Gravitation,” “Momentum and Its Conservation,” “Work,” and
“Energy.”   No topics outside of elementary mechanics were covered in detail.

Goals

In chronological order, the goals of this research project were to:
1. Develop and implement a curriculum to teach modern physics concepts in chaos
theory, complexity theory, and nonlinear systems theory to urban high school students.
2. Assess students’ epistemological and conceptual views regarding the nature of physical
systems before, during, and after the curricular intervention.
3. Analyze data for evidence of students understanding the modern physics concepts to
discover how the curricular intervention helped students learn them.
4. Analyze data for evidence indicating that students’ epistemological and conceptual
views regarding the nature of physical systems changed.

Goal 1 was completed prior to the teaching event described in the procedure
below.  In goals 2 and 4, “epistemological” refers to students’ views on what it is possible
to know about a physical system; in other words, acquire information about the
specificities of what cannot be known about the system.

Goal 3 was accomplished through reviews of both videotapes of students’ words
and actions during the intervention and copies of student-completed instructional
handouts.  It was assumed that the structure of the intervention and the instructor’s
comments were together responsible for students’ gains in understanding the modern
physics concepts.  The degree to which the actions of the primary investigator / teacher /
author of this project influenced students’ understanding was deemed too difficult to
distinguish, especially given the bias inherent in the instructor also being the writer of the
curriculum.   Verbatim fragments of dialog and students’ written comments were
reviewed and quoted in the curriculum description section of this thesis.  Goal 3 provided
evidence for all hypotheses and sub-hypotheses.
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Goal 4, in conjunction with Goal 2, provided evidence for hypotheses H1 and H2,
including sub-hypotheses H2a, H2b, H2c, H2d, H2d, H2e, H2f, and H2g (see below).

Procedure

Prior to the intervention, each student filled out a two-page pre-assessment survey
(see Appendix C).  Two different versions of each page were produced, with questions
worded and ordered differently.  This was done in order to diagnose the effects of
question wording on student responses.  For example, statements worded using the word
“not” in one version were worded without the “not” in the other version.  This way, the
extent to which students answered questions affirmatively could be documented.

The two versions of the first page of pre-assessment questions are hereafter
referred to as A and B, and are followed by the question number.  The two versions of the
second page are C and D.  Approximately one quarter of the class received pages A and
C, another quarter A and D, a third, B and C, and a fourth received versions B and D.

The educational intervention took place over a span of eight 50-minute
instructional periods from January 11-23, 2006.  On the first day, the class as a whole
performed a dueling calculators activity that was modified from an activity described in
the innovative instructional text The Heart of Mathematics (Burger and Starbird, 2000).
The class was divided in two.  Half entered in 0.510 as an initial seed value into their
calculators.  The other half entered a number less than but as close to 0.510 as the
resolutions of their calculators would allow.  Students then performed an iterative
algorithm, multiplying by 180 and hitting the sine function key.  Students saw that as the
number of iterations increased, values began to diverge.  However, students with the
same make and model calculator had the exactly the same results if they started with the
same seed value.

On the second day, a quarter of the class investigated stable and unstable
equilibrium states using bowls and marbles.  Another quarter observed chaotic turbulence
in a water faucet (Gleick, 1987; Briggs and Peat, 1989).  These activities were scaffolded
as inquiry investigations, but students did not appear to learn very much from them.  The
remaining half of the class worked on problems unrelated to this intervention, and never
performed the “faucet” and “bowl” activities.

On the third day, half of the class began investigating the energy dynamics in a
simple pendulum, a tie-in with prior class content.  They drew plots of the pendulum’s
swing in phase space.  Then, they performed inquiry investigations of the magnetic
pendulum, writing hypotheses before conducting experiments.  One experiment involved
seeing if the pendulum bob followed the same trajectory if released twice from
approximately the same point in space.  At the end of the period, students were
encouraged to design and perform their own experiments, but few did so.  On day four,
the other half of the class followed the same curriculum.

On the fifth and sixth days, groups of eight students (a quarter of the class)
observed computer generated plots of a chaotic pendulum in phase space.  They then
experimented with a Boxer simulation of the magnetic pendulum, first drawing
hypotheses of what a map matching the starting and final positions of the pendulum bob
would look like.  The Boxer program was used to obtain simulated data.
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On the seventh and eighth days, a real magnetic pendulum was displayed to
groups of eight, and students devised explanations of its behavior.  They then used the
Boxer program as in days five and six.

On January 24, 2006, students filled out post-assessment surveys.  Two versions
of this instrument were distributed: E and F.  Just as in the pre-assessments, questions
were worded and ordered differently in E and F in order to diagnose the effects of slight
variations, such as including a negative modifier.

Date Students Description of Activities
January 10 n=27 pre-assessments completed
January 11 n=28 dueling calculators activity
January 12 n=16

Group 1: QP, AP, MR, JM
Group 2: KC, DS, PA, FR
Group 3: WL, DN, BT, AC
Group 4: MS, MV, MP, EZ

half of each group observed turbulence in a
water faucet, the other half investigated
stable and unstable equilibrium states using
bowls and marbles

January 13 n=16
Group 1: QP, AP, MR, JM
Group 2: KC, DS, PA, FR
Group 3: WL, DN, BT, AC
Group 4: MS, MV, MP, EZ

-mechanical energy in a simple pendulum
-phase space plots of simple pendulum
-experimentation with magnetic pendulum:
hypothesis1, observation1, hypothesis2,
observation2, hypothesis3, observation3

January 17 n=16
Group 5: CC, TL, IC, SS
Group 6: CP, JCh ,MT, IP
Group 7: JG, CS, BS, MSt
Group 8: AB, JQ, ED, JC

-mechanical energy in a simple pendulum
-phase space plots of simple pendulum
-experimentation with magnetic pendulum:
hypothesis1, observation1, hypothesis2,
observation2, hypothesis3, observation3

January 18 n=8
Group 2: KC, PA, FR, EZ
Group 6: CP, JCh ,MT, IP

-observation of computer generated phase
space plots of a chaotic pendulum
-experimentation with Boxer simulation of
magnetic pendulum

January 19 n=8
Group 3: WL, DN, BT, AC
Group 7: JG, CS, BS, MSt

-observation of computer generated phase
space plots of a chaotic pendulum
-experimentation with Boxer simulation of
magnetic pendulum

January 20 n=8
Group 4: MS, MV, MP, DS
Group 8: AB, JQ, ED, JC

-observation of real world magnetic
pendulum
-experimentation with Boxer simulation of
magnetic pendulum

January 23 n=8
Group 1: QP, AP, MR, JM
Group 5: CC, TL, IC, SS

-observation of real world magnetic
pendulum
-experimentation with Boxer simulation of
magnetic pendulum

January 24 n=30 post-assessments completed
Table 1.  This chart outlines the curricular intervention.
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Hypotheses

Hypothesis H1, “prior predictability”: After learning traditional high school level
classical mechanics and prior to the modern physics educational intervention, most
students believe that all physical systems are predictable.

It is possible that the view of the nature of physics that students get from
traditional curricula implicitly implies or explicitly indicates that all phenomena can be
numerically analyzed and all future events can be predicted, given the right measuring
devices.

Hypothesis H2: During the educational intervention, students will learn modern physics
concepts about the nature of chaotic physical systems and change their beliefs about the
epistemology of physical systems:

Sub-hypothesis H2a, “limited of prediction”: Students will learn that in some systems
(chaotic systems), there are limits to what it is possible to know about the system’s future
behavior, since no measurement of the system’s parameters can be infinitely precise.  In
other words, some systems are not predictable.

Sub-hypothesis H2b, “modeling uncertainty”: After the intervention, students will have a
greater tendency to disagree with the view that given the right measuring devices, all
systems can be modeled in a way that allows their futures to be predicted.

Traditional high school physics instruction is based around the measurements of
linear systems, or linear models of real world systems.  Such instruction may give
students the impression that all systems’ futures can be predicted using models.   No
model can predict the results of chaotic behavior in a nonlinear system, because no
device can store an infinite amount of information.  After students have experimented
with nonlinear systems, students may see that there exist systems that cannot be perfectly
modeled, even with computers.

Sub-hypothesis H2c, “sensitivity to initial conditions”: During the intervention, students
will learn the concept of “sensitivity to initial conditions,” and afterward they will have a
greater tendency to believe that small influences in a system can sometimes produce large
changes in the future behavior of the system.

Gleick (1987) states that the assumption that “very small influences can be
neglected” once lay “at the philosophical heart of science.”  If traditional physics
instruction leads students toward this assumption, can an educational intervention allow
students to see that it is not always true?

Sub-hypothesis H2d, “examples of chaos”: Before the intervention, students will have
difficulties providing examples of systems in which sensitivity to initial conditions
occurs. After, students will be able to provide physics definitions of “initial conditions,”
“chaos,” and examples of chaotic systems.  Some students will be able to demonstrate
their comprehension of these concepts in writing.
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Sub-hypothesis H2e, “holistic view”: The educational intervention will cause students to
move away from reductionist epistemologies and adopt a more holistic view of physical
systems.

Holism is the idea that all the properties of a given system cannot be determined
or explained by the sum of its component parts alone.  Instead, the system as a whole
determines how the parts behave.  Reductionism is the view that the nature of complex
things can always be explained by more fundamental things, such as a system’s
components.  In the philosophy of science, advocates of holism often cite chaotic systems
as examples of phenomena that cannot be adequately explained by reducing them to their
components.  Advocates of reductionism argue that chaotic systems can still be reduced
to their parts, though the way those parts interact with each other spawns emergent
properties.

Sub-hypothesis H2f, “few variables”: Before the intervention, students believe chaotic
systems must have many variables.  After interacting with physical systems with few
variables, students realize that chaotic systems with few variables can exist.

This sub-hypothesis was inspired by the work of Nemirovsky (1993), who found
differing views among students during their explorations of a chaotic water wheel.

Sub-hypothesis H2g, “limited to probability”: Before the intervention, students may
believe that a probability is never all that can be known about a system. The intervention
will show students that sometimes in physics, it is only possible to know the probability
that something will happen.

Introductory instruction in quantum mechanics commonly states that by the
Heisenberg Uncertainty Principle, it is only possible to know the probability that an
electron is some distance away from the atomic nucleus.4  Even if students have heard
about uncertainty in the atom, they may not necessarily believe that, epistemologically, a
probability is all that can be known about a macroscopic system’s future behavior.  The
intervention may change students’ views because, in the magnetic pendulum, the
probability of the pendulum bob ending up above a given magnet is 1 divided by the
number of magnets (as long as the magnets are an equal distance apart and an equal
distance from where the bob would rest without any magnets).  However, the path of the
bob—and the magnet below the bob when it comes to rest—is not predictable.

Hypothesis H3, “complexity”: During the intervention, students will see how nonlinear
systems exhibit both order and chaos, with windows of key variable ranges that result in
periodicity mapped within variable ranges resulting in chaos.

This pattern is sometimes called “complexity.”5  Order and periodicity are
frequently observed in “windows” of variable ranges above and below variable ranges

                                                  
4 Probability in quantum mechanics may be the result of non-deterministic or random
processes.  Chaos, on the other hand, is not randomness; it is deterministic.
5 Prigogine (2003) writes, “Complexity is a property of systems that for given boundary
conditions have more than one possible solutions.  Also in complex systems long range
correlations appear between components for very short-range local interactions.”  A
competing academic definition of “complexity” views systems with more variables as
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that produce chaotic, unpredictable behavior.  This has been known since the 1960s, and
was identified in Lorenz’s investigations of heat conduction.  It can also be seen in
graphical form in the Logistic Map.6

Hypothesis H4, “deterministic chaos”: The computer simulation will allow students to
see examples of deterministic chaos (Prigogine, 1997).  When two starting positions are
infinitely identical, trajectories will be the exactly same, even where arbitrarily close
starting points produce drastically different results.

Placing the chaotic pattern in multiple embeddings, students will see that
determinism arises in the computer simulation although it cannot be detected in students’
investigations of the real world pendulum.

Hypothesis H5, “phase space”: Students will construct and understand graphical
representations in phase space.

Phase space is a graphical representation in which velocity (or angular velocity) is
plotted on the y-axis and position (or angle) is plotted on the x-axis.  Below is a phase
space plot of a chaotic pendulum:

                                                                                                                                                      
more complex.  Do complex linear systems exist in nature?  Is a computer a complex
linear system?
6 See http://en.wikipedia.org/wiki/Logistic_map and
http://mathworld.wolfram.com/LogisticMap.html for educational resources.
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Picture 1.  A screen shot from http://www.myphysicslab.com/pendulum2.html shown to
students on January 13th, 17th, 18th, and 19th.

Assessments

In the pre-assessments, students were asked the questions, “What is a physical
system?” (A1) and “What is a system in physics?” (B1).  In the post-assessment, students
were asked, “What is a system?” (E7,F6).   In hindsight, it was an error to omit the world
“physical” in the post-assessment.  The purpose of pre-assessment questions A1 and B1
was to identify students’ incoming notions of a physical system.  The concept of a system
is fundamental to understanding nonlinear systems.  Questions A1 and B1 were necessary
to determine if students were formulating concepts of a “system” throughout the
intervention, or if they came in with clear notions of what a system is in physics.

Pre-assessment items A2, B2, A3, B4, A4 and B3 were designed to test
hypothesis H1, students’ epistemological views on predictability prior to the intervention.
In A2, students were given the question: “True or False:  Some physical systems are, by
their nature, unpredictable,” and asked to give the fraction of physical systems that are
unpredictable by circling “None,” “A Few,” “Some,” “About Half,” “Most,” “Almost
All,” or “All.”  In pre-assessment B2, the statement was changed to: “True or False:
According to physics, everything is predictable.  If you answered “false,” what fraction of
physical systems are unpredictable?  Circle one.”  The survey instruments were designed
with the impression that students tend to give affirmative answers to difficult questions.
Since on B2, a “false” response was the same as a “true” response to A2, the strength of
such an effect could be documented.  If an equal percentage of students answered “false”
on B2 as answered “true” on A2, one could be reasonably sure that students did not tend
towards giving positive responses.

In pre-assessment questions A3, students were asked, “Can you think of a system
in which a small change in a variable could produce a completely different future
outcome?   If possible, provide an example.”  In question B4, the question was reworded
as, “Can you think of a system in which a very small change in the values of the givens
(the “initial conditions”) could result in a completely different answer?”  In the A4 and
B3, students were given the situation: “Say you solved a physics problem using a set of
givens.  (For example, v = 1.0000000000 m/s.)  Then, you solved the same physics
problem using a new set of givens in which the numbers are only slightly different.  (For
example, v = 1.0000000001 m/s).”  Then, students were asked if it is mathematically
possible to get a very different answer if initially given values are only slightly different.

Pre-assessment questions A2 and B2 were also designed to test sub-hypothesis
H2a (limited prediction) in conjunction with the identical post-assessment items E2 and
F2, respectively.  A greater number of students viewing some systems as unpredictable
would support the sub-hypothesis.  Qualitative data from post-assessment questions E5
(“What was the most important thing you learned from the chaos project?”), F5 (“What
was the most interesting thing...”), E9 (“What is chaos?”), and F8 (“What is chaos?”)
were also obtained to test H2a (limited prediction).

Pre-assessment questions A3 and B4, and  A4 and B3, were designed to test sub-
hypothesis H2c (sensitivity to initial conditions) in conjunction with post-assessment
items E12 and F11. In the post-assessments, students were asked, “What happens when a
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system’s behavior is very sensitive to initial conditions?”  (F11) and to provide an
example of “sensitivity to initial conditions” (E12).  Sub-hypothesis H2c (sensitivity to
initial conditions) would be supported by pre-assessment responses indicating that small
changes cannot produce different outcomes together with post-assessment comments
stating the opposite.  Post-assessments E8/F7 (“What is an initial condition?”) were also
designed to provide data that might support H2c.

In a follow-up question, students were asked to give examples of chaotic systems
that were not studied during the project and to explain why they are chaotic (E13, F12).
These follow-up questions were designed to test sub-hypothesis H2d (examples of chaos)
in conjunction with pre-assessment questions A3 and B4.  A lack of examples of
scientifically chaotic systems in the pre-assessments combined with student examples of
chaotic systems in the post-assessment would support the sub-hypothesis.  Post-
assessment items E9/F8 (“What is chaos?”) and E12 were also designed to provide data
that might support H2d (examples of chaos), or to aid in the interpretation of other
results.

Five Likert questions were identical in the pre- and post-assessments.  A 9-point
scale was used, in which 1 represented “Strongly Agree” and 9, “Strongly Disagree.”

Likert questions A5/E14 (“If enough information is known about a system, it is
possible to predict everything that will happen in it”) and D6/F15 (“Nature has “built-in”
limits to what it is possible to know about some physical systems”) were designed to test
sub-hypothesis H2a (limited prediction).  More disagreement in E14 compared to A5 and
more agreement in F15 compared to D6 would support this sub-hypothesis.

Likert questions C8/E17 (“If you analyzed a coin toss with scientific instruments,
you could predict the outcome every time”), D8/F17 (“It is always possible to know
something with absolute certainty, if one has the right tools or measuring devices”), and
C6/E15 (“Anything in nature can be accurately modeled with computers”) were designed
to test sub-hypothesis H2b (modeling uncertainty).  A greater degree of disagreement
with these statements in the post-assessment would support this sub-hypothesis.

Likert items C7/E16 (“Small influences in a system, such as air currents in a
room, cannot produce large changes in the future behavior of the system”) and D7/F16
(“Small influences in a system, such as air currents in a room, can produce large changes
in the future behavior of the system”) were designed to test sub-hypothesis H2c
(sensitivity to initial conditions).  More disagreement with E16 compared to C7 and more
agreement with F16 compared to D7 would support this sub-hypothesis.

 Likert items C9/E18 (“In some systems, the system’s behavior cannot be
modeled by studying the system’s parts.  The system must be studied as a whole”) and
B5/F14 (“In physics, the universe is analyzed by breaking it down into its component
parts, just as one can figure out how a machine works by finding the purpose of each of
its parts”) were designed to test sub-hypothesis H2e (holistic view).  More agreement
with E18 compared to C9, and more disagreement with F14 compared to B5 would
support this sub-hypothesis.

Likert items D9/F18 (“In some systems, it is only possible to know the probability
that something will happen”) were designed to test sub-hypothesis H2g (limited to
probability) along with data from true or false questions E4 and F4.  Question E4 asked,
“Sometimes, physics can only predict the probability that something will happen, no
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matter how accurately things are measured.”  Question F4 stated, “Probability is the
result of the laws of nature.”  Affirmative answers would support the hypothesis.

Post-assessment true or false questions E1 and F1 were designed to test sub-
hypothesis H2f (few variables).  Post-assessment question E1 stated, “For a system to be
chaotic, it must have many variables,” and F1 read, “Can a system with only a few
variables exhibit chaos?”  Answers of “false” for E1 and “true” for F1 would support the
sub-hypothesis, although comparison data was not obtained in pre-assessments.

True or false questions E3 and F3 were designed to test hypothesis H3
(complexity) by asking students if a chaotic system can be ordered or periodic.
Affirmative answers would support the hypothesis.  A better phrasing would have asked
if a nonlinear system can be ordered or periodic, but the term “nonlinear” was not
introduced to students.

Qualitative data (students interviews, oral and written comments) were used to
test hypotheses H4 (deterministic chaos) and H5 (phase space) and to supplement
quantitative data for all other hypotheses and sub-hypotheses.

Curriculum Description

January 11, 2006

On Wednesday, January 11, 2006, pre-assessment surveys were collected and
discussed in class.  Students brought up weather and chemical reactions as examples of
an unpredictable systems.  The instructor posed the question, “Will we ever be able to
accurately predict the weather?”  Some students felt that some systems, like weather, are
inherently impossible to predict.  For example, BS said that since there are so many
constantly changing variables, there is no way we will ever be able to accurately predict
it.  Other students thought that increasingly accurate predictions will be possible as
technology improves.  When the instructor asked if a small change, like moving one’s
hands, could cause a tornado, MSt brought up the example of a bomb in which “a small
thing triggers a big explosion in a chain reaction.”  Seven students voted that they
doubted if a small change could produce a large effect.  One said that it depends on the
situation.  The instructor acknowledged that it depends on what kind of system is being
studied.  QP said that something relatively minor, like the temperature, might influence
the outcome in a race.

The dueling calculators activity sheet was distributed.  The instructor asked for a
random number; a student volunteered 510.   Half of the class—those with odd
birthdays—was instructed to enter 0.510 into their calculators.  The other half was told to
enter 0.50999999999, and to keep typing 9s until they could not enter any more digits.
They wrote this number on their worksheets as the “initial number.”   In degree mode,
students multiplied this number by 180 and hit the SIN key to take the sine of the
product.  Students were asked to make a hypothesis about what will happen when these
last two steps are repeated 25 times.   Students did so and recorded their results.

Students’ hypotheses varied.  Six students indicated that the numbers will
decrease, three that they would increase, and two said that they would change.  Three said
that the 25th iteration would be the same as the initial number.  Eleven students gave
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hypotheses that compared the two initial numbers.  Of these, three wrote that both sets of
results would be the same, three that they would be slightly different, and four indicated
that there would be two different sets of numbers.  One student, MSt, predicted, “The
numbers will differ more and more every iteration, the 25th iterations will be different.”
MSt’s comment is noteworthy because he was able to provide a somewhat accurate
prediction of the results of the activity.

Students were told that all results should be in between 0 and 1.  When finished,
students compared their results.  One group found that their results were similar until the
eighth iteration; then they began to diverge rapidly.  AB said that this was because of
rounding.  Through questioning, students concluded that the calculator has finite (limited)
memory.  CP said that the calculator has to round the numbers; the instructor explained
that this is true—since each number is infinitely long, the calculator must round.  MR and
QP pointed out that all of their numbers were the same. The instructor pointed out that
they used the same calculator, and asked, “What’s different between two calculators?”
LR said that one has more memory, and the instructor acknowledged that the number of
decimal places to which the number is rounded varies from calculator to calculator.  The
instructor pointed out that two students with the same brand of calculator got the same set
of answers.  Students were asked to write down the make and model of their calculators.

Students did not appear to be very surprised by these findings, even thought they
had been rounding their answers in traditional physics problems throughout the semester.
The concept of “sensitivity to initial conditions” was introduced.  Students then answered
the question, “Did your neighbors get similar results?  Record any similarities or
differences.”  Five groups of students found that results were the same until the 3rd, 8th,
13th, 15th, and 23rd iterations, respectively.  Students with the same make and model of
calculator found that their results were the same.

Students also wrote their conclusions.  Out of 28 students, twelve (43%) indicated
that the results depended on the kind of calculator used, in keeping with sub-hypothesis
H2b (modeling uncertainty).  Ten students indicated that the calculators’ rounding
processes caused an effect, and seven explicitly stated that a slight difference in the initial
number would change the final outcome; thus, 61% of students provided evidence for
H2c (sensitivity to initial conditions).

When asked, “What did you learn from this activity?”,  twelve out of 28 students
mentioned that different calculators round differently, and three said that calculators are
imperfect.  Thus, 54% of students provided evidence supporting H2b (modeling
uncertainty).  Seven (25%) stated that small initial differences can result in big
differences in the end, providing evidence for H2c (sensitivity to initial conditions).  It is
not surprising that more students mentioned differences in calculator rounding algorithms
than mentioned initial differences in seed values, because even two identical seed values
could produce divergent outcomes in two different calculators.

The final question on the worksheet was, “Write down another example of
‘sensitivity to initial conditions.’”   Two students mentioned a “weather forecast,” and
another stated that if one person on a sports team has a bad day, the whole team can have
a bad game.  Interestingly, one wrote, “Where your TV antenna is at.  My sister has better
reception than me and our rooms are not that far.”  Another stated that two different
processes can produce the same result using an example of hitting a tennis ball.   Five
students suggested using another mathematical function such as cosine instead of sine.
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Taken together, these responses provide qualitative evidence for sub-hypotheses
H2a (limited prediction), H2b (modeling uncertainty), H2c (sensitivity to initial
conditions), and hypothesis H4 (deterministic chaos).  In keeping with H2a, students
were able to see that the outcome of the algorithm was unpredictable.  In keeping with
H2b, students realized that any given calculator was imperfect.  The comments of many
students explicitly mentioned the concept of sensitivity to initial conditions, or alluded to
it through stating that a rounding can effect results, in keeping with H2c.  Qualitative
evidence of students’ seeing that the same make and model of calculator gives the same
results provides tentative support for H4.

January 12, 2006

On Thursday, January 12, 2006, each of the four groups of four students was
divided in two.  Two students from each group completed the bowl activity, and engaged
in the faucet activity.  Students conducted inquiry based investigations and were
encouraged to explore.  These activities were only marginally successful because students
had difficulties seeing their connections with the other activities in the intervention.

At one point during the bowl activity, the instructor asked, “What would be a
small external force on the marble?”  Students could not answer the question, an
unsurprising result given that people remain consciously unaware of the many small
forces about us all the time.  (A common example of this given in physics instruction is
the Earth’s magnetic force field.)  While pointing at an air vent, the instructor offered,
“the wind currents in the room?”   Students understood that air currents could exert small
forces, because this topic had been covered in lessons about air resistance and drag
forces.

During the faucet activity, LR said that as the handle is turned, “the more
pressure, it fills up the hole, [pointing to the faucet]- I’m not sure how to say it.”  She
wrote, “when you gradually turn the knob more, the shape of the water is more defined.”
The activity instructions were unclear as to whether the pattern involved the initial
creation of the water flow in addition to the way in which the flow changes as the handle
is turned.  Students were meant to focus on the latter effect, but often did not.  The
question of “cut-off time” has been an issue in the Patterns research group on several
occasions.  When identifying a pattern, it is reasonable to ask, “when does the pattern
begin, and where does it end?”

January 13, 2006

On Friday, January 13, 2006, Instructional materials were passed out to groups
1,2,3 and 4 (16 students) with pictures of fractals from Burger and Starbird (2000).  The
instructor set up ring stands with materials for a simple pendulum. Students began by
analyzing the mechanical energy dynamics in the simple pendulum, a tie-in with a topic
that had just been covered in the class curriculum. Next, students were given the problem
drawing the path of the pendulum bob in phase space, provided with graph paper and
labeled axes.  At first, instructor scaffolding was required.  When the instructor explained
the negative and positive directions and origin (0,0) on the position and velocity axes,
Group 1 (QP, MR, AP, and JM) grasped the concept of phase space:
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MR: It’s a circle.
AP: it’s going to be a shape/  a circle?
Primary Investigator: [nods] yes, but it eventually stops, so what’s happening
AP: It gets smaller.
MR: So it’s really a spiral.
PI: yes!
At this point, MR expresses confusion.  His prior idea that the y-axis represents y-
displacement shows robustness:
MR: All this is x-axis?  There is no y-axis?
QP explained why it is a spiral. By this point, the group of four students could see as it
goes back and forth, it goes from + to -  in position and velocity.

This is qualitative evidence that changing the axis labels confuses students.  For
some reason, students have difficulties understanding graphical representations when
axes are defined in new or unfamiliar ways.  It was observed in almost all other student
groups, with some notable exceptions.  It is a strong argument for further research in
teaching students literacy skills in graphical representations.  Even in a UC Berkeley
research group, participants could not see the spiral without some hints, so it is not
surprising that the high school students needed scaffolding. But significantly, since the
answer requires no advanced knowledge in physics, students eventually identified the
circle and spiral attractors: “it’s going to be a shape/  a circle?”

Next, JM said: “It starts from negative.  It’s going around the wrong way.”   Now,
students debated whether the direction of the spiral should be clockwise, or
counterclockwise, a non-trivial question.7

Next, students were given magnets to place under their pendulums.  Inquiry-based
student investigation was facilitated, with students writing hypotheses prior to
experimentation. 8 9 Students placed one magnet under their pendulums, creating
nonlinear systems.  Before releasing the pendulum’s bob, all students’ hypotheses
predicted linear behavior in keeping with hypothesis H1 (prior predictability).
Significantly, no responses indicated anything about possible chaotic or random behavior.
“Unpredictability” was not mentioned by any students.

                                                  
7 The answer depends on whether the bob’s initial velocity (after its initial angular
displacement, a debatable part of the pattern) is to the right (positive) or to the left
(negative).   If the right is negative and left is positive, it is the opposite sign.
8 When facilitating this lab in the classroom, physics instructors should note that chaotic
behavior is the most obvious when the distance between the bob and the magnets is the
smallest.  Magnets should be firmly attached to the table or ring stand base with tape or,
if necessary, glue, so that they do not jump up and stick to the bob.  Round circular
magnets work best, and the north and south sides should be labeled with paint or
correction fluid.  Attaching the magnets to the base of a ring stand changes the physics of
the system, since the ring stand can resonate.  Two or more magnets are necessary to see
obviously chaotic effects.
9 See http://www.exploratorium.edu/snacks/strange_attractor.html for an educational
resource.
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In their hypotheses, nine students predicted the pendulum bob would slow down,
but five wrote that it would speed up, and one that it would “not slow down.”  Four said
that the magnet would attract the bob; in contrast, four predicted that the bob would not
stop moving.  Three students indicated that the “pattern will change,” and another two
that the bob would stop in the middle.  Other individual responses included “no effect,”
“the shape created by the bolt becomes flatter,” and “the magnet will stick to the bob.”
Each of the n=33 responses was coded into one of these ten categories.  In future work,
students could be given a more specific question, such as one asking if the bob’s motion
will become less predictable.

Before students placed a second magnet below the pendulum, they were asked to
give another hypothesis about what would happen.10 Again, no students indicated that
“chaotic,” “unpredictable,” or “random”11 behavior would occur in the system, evidence
for hypothesis H1 (prior predictability).  Only one student’s (MSt’s) answer gave any
indication of there being limits to what is possible to know: “stops at one of the magnets,
don’t know which.”  One other student (JCh) hinted at strangeness, writing that the
magnets give the bob “two jerks” when it passes over them.  DS acknowledged, “If there
are two magnets, then the magnets will attract the bob with the same force.”  Ten students
stated the modal response, that the bob will slow down.12 The remaining 20 students gave
a wide range of answers, such as “stick together” (n=3), “speed up” (n=2), move “back
and forth” (n=2), “swing between both” (n=2), “stay at constant speed” (n=2), “pattern
will stay but the distance will decrease” (n=1), “orbit” (n=1), and “elipse” (n=1).
Significantly, 30 out of 33 student responses (91%) were descriptions of predictable,
linear behavior—strong evidence for hypothesis H1 (prior predictability).

For example, in Group 1, AP wrote: “It will continue in orderly fashion back and
forth from magnet to magnet.”  Her group then observed the motion of their chaotic
magnetic pendulum (0:50):
JM: It’s out of control / Chaos / I think it’s going to stay like that for a long time.
MR: It will never stop / like metal balls.
PI: Is it repeating the same-?
Ss: No.
JM: maybe it’s random.
PI: Could you predict what it’s going to do?
Ss: No.
PI: but now it’s going back and forth / so it is periodic?
[Then, the pendulum stopped acting periodically.  Everyone sees this.]
PI: now, it’s chaotic

                                                  
10 When two magnets are placed below the pendulum, the system’s dynamics are such
that a tiny change in the placement of a magnet can radically change the bob’s trajectory,
as can two nearly identical releases from arbitrarily close starting positions.
11 Random behavior is not chaotic, although chaotic behavior may appear to be random
because it is unpredictable.  Students who acknowledged randomness were correct in
noting the unpredictable nature of the system, so their responses were interpreted as
supporting H2a (limited prediction).
12 This is not an incorrect answer, because energy dissipates in a non-linear pendulum just
as it does in a simple pendulum.
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It is a property of nonlinear, chaotic systems that, under certain ranges of the
essential variables, they can exhibit ordered, periodic behavior.  But the students who
observed the magnetic pendulum behaving periodically did not write answers supporting
hypothesis H3 (complexity), which states that students were able to understand that non-
linear systems can exhibit order.  In future work, further scaffolding could facilitate
understandings of this concept.  However, JM did write “It’s random,” in keeping with
H2a (limited prediction).

JM’s comment “I think it’s going to stay like that for a long time” is interesting.
The instructor was not able to get JM to defend this initial hypothesis, because it was
quickly disproved by direct observation.  However, JM’s assertion may be an
acknowledgement of the way that certain non-linear systems can sustain ordered, periodic
behavior, far from equilibrium, for long periods of time.  Such “dissipative structures”
were discovered by Ilya Prigogine, and examples range from weather and chemical
systems13 to living organisms themselves. 14

In Group 2 (KC,DS,PA, and FR), students realized that the simple pendulum is
not sensitive to initial conditions, noting that “there is no difference” when the bob is
released from similar starting positions. After placing down two magnets, students had
varying hypotheses.  DS’s hypothesis, that the two magnets “will attract the bob with the
same force,” acknowledged the unstable equilibrium in the system.  PA wrote, “I think
the bob will move around.”  Upon observing the bob’s chaotic trajectory, DS wrote: “The
bob revolves & swings uncontrollably because the bob is looking for which magnet has a
stronger attraction.”  KC wrote: “it moved out of control when the bob and magnite [sic]
were close together but it’s still swinging.”  FR wrote something similar: “The pendulum
attracts to either one of the sides of the magnet and moves out of control.”15  The
responses of DS, KC, and FR are in keeping with H2a (limited prediction).

After observing chaos, students in Group 2 performed the experiment of releasing
the bob multiple times from the same starting point.  After one release, they recorded
their hypotheses regarding the next release.  DS did not seem to understand that the
question was asking about how the bob’s swing would be different in consecutive trials:
“it will move in two directions, back & forth.”  PA wrote, “I think the bob will follow the
same path.”  KC wrote that as well, but added, “As it gets closure [sic] to the magnitude
[sic] it will go chaotic.”  FR wrote, “The same pattern will keep on repeating because of
the magnet.” 16

In his observations, PA acknowledged that his hypothesis was disproved: “The
bob did not follow the same path and continued to move,” qualitative evidence for sub-
hypothesis H2c (sensitivity to initial conditions).  KC wrote, “As the ball got closer to the

                                                  
13 See http://people.musc.edu/~alievr/BZ/BZexplain.html for an educational resource.
14 See http://www.prototista.org/E-Zine/OriginsofOrder/OriginsofOrder-TOC.htm for an
educational resource.
15 The use of the phrase “out of control” to describe chaos is conceptually interesting.  Is
chaos an uncontrollable pattern?  In some ways it is, although contemporary research in
chaos theory does focus on ways to control chaotic systems by modeling them
mathematically.
16 Future work could involve further thinking about exactly what students meant when
they wrote these statements.
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magnitude [sic] it did go chaotic.”  Significantly, KC was comfortable enough with the
physics definition of “chaotic” to use it to accurately describe a chaotic
system—evidence for sub-hypothesis H2d (examples of chaos).  FR recorded: “The same
pattern did occur again b/c of the magnet’s attraction.”  Interestingly, FR chose to
conceptualize chaos as a “pattern,” which is also how the UC Berkeley Patterns Research
Group sees it.  He also noticed that the magnets played a role in the pattern’s existence.
In a follow-up experiment, FR wrote that the overall “pattern” of the bob’s motion did
not change when a small wind force was exerted on it.  He did not pay attention to the
intricacies of the bob’s trajectory, and therefore wrote that a “small external force does
not affect it significantly.”  Although his conclusion was opposite to the one students
were supposed to come to, from the perspective of the Patterns Research Group, it is not
surprising given that FR viewed chaotic motion as a “pattern.”   Certainly, chaotic motion
has a recognizably different structure than harmonic oscillation or linear motion.  FR’s
comment indicates that he was aware of some of these differences.

January 17, 2006

Dr. Martin Luther King, Jr.’s birthday was celebrated on Monday, January 16,
2006.  On Tuesday, Groups 5,6,7 and 8 were given handouts with instructions similar to
those given on January 13, but with minor corrections and revisions.  First, students built
simple pendulums and drew the bob’s trajectory in phase space. One group of students
(Group 5: CC, TL, IC, and SS) were able to draw a circle in phase space with no
assistance from the instructor:
PI: Why did you say it was a circle?
TL: symmetry
PI: Over the long term, what happens?
CC: It’s a spiral
As expected, these students observed no differences in the trajectory of the simple
pendulum when it was released from two similar positions.  However, their responses
indicate that they did not understand the meaning of the phrase “sensitivity to initial
conditions” at this point in the intervention.

Later, these students wrote hypotheses predicting what will happen when two
magnets are placed under the bob.  All four indicated that the “magnets will slow the bob
down.” These students did not predict chaos or random behavior, evidence supporting
H1.  From the perspective of the Patterns Research Group, these students gave a
mechanical rather than a “patterns level” type explanation.

When the group’s magnetic pendulum began acting chaotically, IC appeared to be
amused by its unpredictable trajectory, evidence that its behavior acted as a discrepant
event to facilitate conceptual change.  Her words and emotions indicated her surprise that
a simple nonlinear system can behave strangely: “Look, it twists / oh its going to this
way, see, it’s turning around, now, look at it!  I’m so proud of it...now it stopped.” 17 For
her observations, she was unfortunately epigrammatic, writing, “The magnets slightly
push the bob.”

                                                  
17 IC’s comment may be an example of “magical thinking.”  To her, the pendulum seems
to take on a life of its own.
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This group devised their own experiment, placing two magnets one inch apart and
releasing the bob from a height of 5.5 cm directly above a point on the table.  Prior to
release, two students hypothesized that the bob would end up in the middle, between the
two magnets.  IC wrote, “I think that small forces can significantly change the behavior,”
and SS indicated that the bob will stop at a “random” magnet depending on “when it runs
out of energy.”  The latter two responses support sub-hypothesis H2c (sensitivity to initial
conditions).  The students observed that the bob “randomly chose one magnet to stop at,”
and when the experiment was repeated, “it chose the other magnet.”  CC and SS called
this phenomenon “random selection,” TL wrote “arbitrary selection,” and IC stated that
“there isn’t a ‘constant’ answer, it’s unpredictable and random.”  These experimental
conclusions clearly indicate that these students underwent conceptual change as predicted
by sub-hypotheses H2a (limited prediction) and H2g (limited to probability).

Another group of students (Group 6: CP, JCh, MT and IP) hypothesized that after
placing one magnet below the pendulum bob, “The bob’s swing will be interrupted by the
force of the magnet and make the swing different.”  They noticed that when the bob is
close to the magnet, it “gets a little jerk and the swing is bumpy.”  They predicted that
two magnets will produce two jerks.  Then, these students observed chaos:
PI: Do you think you could predict which one it ends up at?
JCh: No.
PI: This is chaos, because it’s very sensitive to initial conditions.  We cannot predict
which magnet it will end up at.
MT: that’s cool!
This group of students, bored and frustrated until this point, immediately became amused
and excited by physics.  Interestingly, students with dueling hypotheses began to bet each
other about which magnet the bob would end up over.  As energy dissipated, the bob
circled around one magnet, then moved to the next, with a student advocating for it to
stop at the magnet he bet on.   Students clearly realized that they each had 50/50 odds; a
probability was all they could know.  All four students in this group wrote that the bob’s
movement was “unpredictable.”  One also wrote that it was “chaotic.”  This is qualitative
evidence for sub-hypotheses H2a (limited prediction), H2d (examples of chaos), and H2g
(limited to probability).

Immediately afterward, these students predicted what would happen if the bob
were to be released from approximately the same place twice.  Interestingly, students
wrote, “it will follow the same path as before,” indicating robustness in the view that
small changes cannot have divergent effects.  After doing the experiment, students saw
that their hypothesis was disproved, as evidenced by the group’s dialog:
PI: Even if you released from the same point in space, is there any way of knowing where
it’s going to land?
JCh, MT, IP: [together] no!
Thus, students were led toward sub-hypothesis H2c (sensitivity to initial conditions).

In Group 7 (JG, CS, BS and MS), CS predicted that the bob would stop at the
same magnet it stopped at the last time it was released.  When it did, BS noted: “But it
didn’t follow the same path.”  Then, hypothesizing what will happen if the bob is
released from approximately the same place, BS wrote, “It will go to either of the
magnets, can’t tell which,” in keeping with H2a (limited prediction) and H2c (sensitivity
to initial conditions).  His partner MS hypothesized that “it will do the same thing,” but
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observed that the bob followed a different path, concluding, “initial determines final,” in
keeping with H2c.  On videotape, MS and BS appear surprised and confused by the
pendulum’s unpredictability.  At the same time, they can see that unpredictability results
from the trajectory’s sensitivity to the precise initial conditions of its two approximately
identical starting locations.

In Group 8, students (AB, JQ, ED and JC) observed no sensitivity to initial
conditions in the simple pendulum, as expected.  This group predicted that placing
magnets under the pendulum would make it “slow down.”  Students in this group were
divided; one, JQ, had difficulties accepting sensitivity to initial conditions and
unpredictability: 18

PI: If you were to do that experiment over again...do you think it would end at magnet B
again?
AB: no
JQ: yes
PI: So what’s going to determine if it ends up at A or B?
JQ: Where you release it from
PI: Do you think it would be easy to determine where it ends based on what point you
release it from?
JQ: yes
AB: no
PI: Do you think if you release it from a point around this one [pointing at one of the
magnets] it will end up at that one?  [releases the pendulum]
JQ: yes
AB: no, because this one will slow it down, and it will go to this one [pointing at the
other magnet.  As if on que, the bob does this.]
The above dialog shows that students had differing views on predictability, offering
inconclusive evidence for H1 (prior predictability).  JQ robustly held on to the view that
the bob would follow the same path as before, but AB was more willing to accept
unpredictability as natural.  The extent to which students like AB’s epistemological views
were altered is unclear, but JQ’s surely were, as his observations disproved his
predictions.  Since his observations contradicted his epistemological beliefs, conceptual
change occurred, evidence for H2a (limited prediction).

Later, this group of students released their bob from approximately the same set
of initial conditions (0:52):
PI: Did it follow the same path?
AB: kind of
PI: kind of?
AB: no
IP: try it again
PI: Is this motion it’s doing now the same as it was before?
AB: It looks kind of the same, but not really
JQ: it didn’t do that (before), [pointing to the bob going around in circles]
ED: I guess because it’s not launched from high

                                                  
18 See videotape 1/17B starting at 0:36:00 for further reference.


