We assume two galaxy population, A and B; the corresponding maps have the following agp,:
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Here, b4 and bp correspond to the linear galaxy bias for both populations, a%lb and aifg are the respective

Poisson contribution to the maps, and a%l is the underlying (identical for both population) dark matter
map/distribution.

1 Standard approach

In the “standard analysis”, with ag,, as observables, we have as data vector simply:
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One would then need to compute the covariance matrix of those observable (in order to do some Fisher
later on). Here are the various terms:
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The approximation in the last line corresponds to the assumption that population B has a significantly
high number density of galaxies, which allows us to ignore its corresponding Poisson contribution.

NB: one can note that the correlation factor between the two agy,, is the following:
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As the ratio N1 /(b4 CM) gets closer to 0 (i.e. the ratio between the Poisson contribution to the C; of
A and its “cosmological” contribution), the correlation between the two afm gets closer to one: you're
essentially probing the same distribution.



